Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 1 - Cánh diều. Bài viết này sẽ hướng dẫn bạn giải bài tập 4 trang 20 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.
Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau: a) (fleft( x right) = {x^3} - frac{3}{2}{x^2}) trên đoạn (left[ { - 1;2} right]) b) (fleft( x right) = {x^4} - 2{x^3} + {x^2} + 1) trên đoạn (left[ { - 1;1} right]) c) (fleft( x right) = {e^x}left( {{x^2} - 5x + 7} right)) trên đoạn (left[ {0;3} right]) d) (fleft( x right) = cos 2x + 2x + 1) trên đoạn (left[ {frac{{ - pi }}{2};pi } right])
Đề bài
Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau:
a) \(f\left( x \right) = {x^3} - \frac{3}{2}{x^2}\) trên đoạn \(\left[ { - 1;2} \right]\)
b) \(f\left( x \right) = {x^4} - 2{x^3} + {x^2} + 1\) trên đoạn \(\left[ { - 1;1} \right]\)
c) \(f\left( x \right) = {e^x}\left( {{x^2} - 5x + 7} \right)\) trên đoạn \(\left[ {0;3} \right]\)
d) \(f\left( x \right) = \cos 2x + 2x + 1\) trên đoạn \(\left[ {\frac{{ - \pi }}{2};\pi } \right]\)
Phương pháp giải - Xem chi tiết
B1: Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
B2: Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right),f\left( b \right)\).
B3: So sánh các giá trị tìm được ở bước 2 và kết luận.
Lời giải chi tiết
a) Ta có: \(f'\left( x \right) = 3{x^2} - 3x\).
Nhận xét \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\).
Ta có \(f\left( { - 1} \right) = - \frac{5}{2};f\left( 0 \right) = 0;f\left( 1 \right) = - \frac{1}{2};f\left( 2 \right) = 2\).
Vậy hàm số \(f\left( x \right) = {x^3} - \frac{3}{2}{x^2}\) có giá trị nhỏ nhất bằng \(\frac{{ - 5}}{2}\) khi \(x = - 1\) và có giá trị lớn nhất bằng \(2\) khi \(x = 2\) .
b) Ta có: \(f'\left( x \right) = 4{x^3} - 6{x^2} + 2x\).
Nhận xét \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = \frac{1}{2}\end{array} \right.\).
Ta có \(f\left( { - 1} \right) = 5;f\left( 0 \right) = 1;f\left( {\frac{1}{2}} \right) = \frac{{17}}{{16}};f\left( 1 \right) = 1\).
Vậy hàm số \(f\left( x \right) = {x^4} - 2{x^3} + {x^2} + 1\) có giá trị nhỏ nhất bằng \(1\) khi \(\left[ \begin{array}{l}x = 1\\x = 0\end{array} \right.\) và có giá trị lớn nhất bằng \(5\) khi \(x = - 1\).
c) Ta có: \(f'\left( x \right) = {e^x}\left( {{x^2} - 3x + 2} \right)\).
Nhận xét \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 1\end{array} \right.\).
Ta có \(f\left( 2 \right) = {e^2};f\left( 0 \right) = 7;f\left( 3 \right) = {e^3};f\left( 1 \right) = 3e\).
Vậy hàm số \(f\left( x \right) = {e^x}\left( {{x^2} - 5x + 7} \right)\) có giá trị nhỏ nhất bằng \(7\) khi \(x = 0\) và có giá trị lớn nhất bằng \({e^3}\) khi \(x = 3\).
d) Ta có: \(f'\left( x \right) = - 2\sin 2x + 2\).
Nhận xét \(f'\left( x \right) = 0 \Leftrightarrow x = \frac{\pi }{4}\).
Ta có \(f\left( { - \frac{\pi }{2}} \right) = - \pi ;f\left( {\frac{\pi }{4}} \right) = 1 + \frac{\pi }{2};f\left( \pi \right) = 2 + 2\pi \).
Vậy hàm số \(f\left( x \right) = \cos 2x + 2x + 1\) có giá trị nhỏ nhất bằng \( - \pi \) khi \(x = - \frac{\pi }{2}\) và có giá trị lớn nhất bằng \(2 + 2\pi \) khi \(x = \pi \).
Bài tập 4 trang 20 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong môn Toán.
Bài tập 4 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ hoặc hàm lượng giác. Để giải quyết bài tập này, học sinh cần:
Có một số phương pháp thường được sử dụng để giải bài tập về giới hạn:
Câu a: Tính limx→2 (x2 - 4) / (x - 2)
Lời giải:
limx→2 (x2 - 4) / (x - 2) = limx→2 (x - 2)(x + 2) / (x - 2) = limx→2 (x + 2) = 2 + 2 = 4
Câu b: Tính limx→-1 (x3 + 1) / (x + 1)
Lời giải:
limx→-1 (x3 + 1) / (x + 1) = limx→-1 (x + 1)(x2 - x + 1) / (x + 1) = limx→-1 (x2 - x + 1) = (-1)2 - (-1) + 1 = 1 + 1 + 1 = 3
Để củng cố kiến thức về giới hạn, bạn có thể luyện tập thêm các bài tập tương tự trong SGK Toán 12 tập 1 - Cánh diều và các tài liệu tham khảo khác.
Bài tập 4 trang 20 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh hiểu rõ hơn về khái niệm giới hạn và các phương pháp tính giới hạn. Hy vọng với lời giải chi tiết và các lưu ý trên, bạn sẽ tự tin hơn khi giải quyết các bài tập tương tự.