Logo Header
  1. Môn Toán
  2. Giải bài tập 3 trang 93 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 3 trang 93 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 3 trang 93 SGK Toán 12 tập 1 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 3 trang 93 SGK Toán 12 tập 1 - Cánh diều một cách dễ dàng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.

Bảng 24 thống kê độ ẩm không khí tủng bình các tháng năm 2021 tại Đà Lạt và Vũng Tàu (đơn vị: %) a) Hãy lần lượt ghép các số liệu của Đà Lạt, Vũng Tàu thành năm nhóm sau: [75;78,3), [78,3;81,6), [81,6;84,9), [84,9;88,2),[88,2;91,5) b) Tính khoảng biến thiên, khoảng tứ phân vị, phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm của Đà Lạt và Vũng Tàu c) Trong hai thành phố Đà Lạt và Vũng Tàu, thành phố nào có độ ẩm không khí trung bình tháng đồng đều hơn?

Đề bài

Bảng 24 thống kê độ ẩm không khí tủng bình các tháng năm 2021 tại Đà Lạt và Vũng Tàu (đơn vị: %)

Giải bài tập 3 trang 93 SGK Toán 12 tập 1 - Cánh diều 1

a) Hãy lần lượt ghép các số liệu của Đà Lạt, Vũng Tàu thành năm nhóm sau:

[75;78,3), [78,3;81,6), [81,6;84,9), [84,9;88,2),[88,2;91,5)

b) Tính khoảng biến thiên, khoảng tứ phân vị, phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm của Đà Lạt và Vũng Tàu

c) Trong hai thành phố Đà Lạt và Vũng Tàu, thành phố nào có độ ẩm không khí trung bình tháng đồng đều hơn?

Phương pháp giải - Xem chi tiếtGiải bài tập 3 trang 93 SGK Toán 12 tập 1 - Cánh diều 2

Khoảng biến thiên là hiệu của đầu mút phải nhóm cuối cùng và đầu mút trái nhóm đầu tiên

Khoảng tứ phân vị là \({Q_3} - {Q_1}\)

Phương sai: \({s^2} = \frac{{{n_1}.{{({x_1} - \overline x )}^2} + {n_2}{{({x_2} - \overline x )}^2} + ... + {n_p}{{({x_p} - \overline x )}^2}}}{n}\)

Độ lệch chuẩn: \(s = \sqrt {{s^2}} \)

Thành phố nào có độ lệch chuẩn của nhiệt độ nhỏ hơn thì nhiệt độ không khí trung bình tháng đồng đều hơn

Lời giải chi tiết

a)

Giải bài tập 3 trang 93 SGK Toán 12 tập 1 - Cánh diều 3

b) – Xét số liệu ở Đà Lạt:

+ Khoảng biến thiên: R = 91,5 – 75 = 16,5

+ Số phần tử của mẫu là n = 12

Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 0\), \(c{f_2} = 2\), \(c{f_3} = 3\), \(c{f_4} = 9\), \(c{f_5} = 12\)

Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 3. Xét nhóm 3 là nhóm [81,6;84,9) có s = 81,6, h = 3,3, \({n_3} = 1\) và nhóm 2 là nhóm [78,3;81.6) có \(c{f_2} = 2\)

Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_2}}}{{{n_3}}}} \right).h = 81,6 + \left( {\frac{{3 - 2}}{1}} \right).3,3 = 84,9\)

Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 9. Xét nhóm 4 là nhóm [84,9;88,2) có t = 84,9, l = 3,3, \({n_4} = 6\) và nhóm 3 là nhóm [81,6;84,9) có \(c{f_3} = 3\)

Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_3}}}{{{n_4}}}} \right).l = 84,9 + \left( {\frac{{9 - 3}}{6}} \right).3,3 = 88,2\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 88,2 - 84,9 = 3,3\)

+ Số trung bình cộng của mẫu số liệu ghép nhóm là: \(\overline {{x_1}} = \frac{{0.76,65 + 2.79,95 + 83,25 + 6.86,55 + 3.89,85}}{{12}} = 86\)

Phương sai của mẫu số liệu ghép nhóm là:

\({s_1}^2 = \frac{{0{{(76,65 - 86)}^2} + 2{{(79,95 - 86)}^2} + {{(83,25 - 86)}^2} + 6{{(86,55 - 86)}^2} + 3{{(89,95 - 86)}^2}}}{{12}} = 10,7825\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_1} = \sqrt {{s_1}^2} = \sqrt {10,7825} \approx 3,28\)

– Xét số liệu ở Vũng Tàu:

+ Khoảng biến thiên: R = 91,5 - 75 = 16,5

+ Số phần tử của mẫu là n = 12

Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 5\), \(c{f_2} = 11\), \(c{f_3} = 12\), \(c{f_4} = 12\), \(c{f_5} = 12\)

Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) suy ra nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 3. Xét nhóm 1 là nhóm [75;78,3) có s = 75, h = 3,3, \({n_1} = 5\)

Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_0}}}{{{n_1}}}} \right).h = 75 + \left( {\frac{{3 - 0}}{5}} \right).3,3 = 76,98\)

Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 9. Xét nhóm 2 là nhóm [78,3;81,6) có t = 78,3, l = 3,3, \({n_2} = 6\) và nhóm 1 là nhóm [75;78,3) có \(c{f_1} = 5\)

Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_1}}}{{{n_2}}}} \right).l = 75 + \left( {\frac{{9 - 5}}{6}} \right).3,3 = 77,2\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 77,2 - 76,98 = 0,22\)

+ Số trung bình cộng của mẫu số liệu ghép nhóm là: \(\overline {{x_2}} = \frac{{5.76,65 + 6.79,95 + 83,25}}{{12}} = 78,85\)

Phương sai của mẫu số liệu ghép nhóm là:

\({s_2}^2 = \frac{{5{{(76,65 - 78,85)}^2} + 6{{(79,95 - 78,85)}^2} + {{(83,25 - 78,85)}^2}}}{{12}} = 4,235\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_2} = \sqrt {{s_2}^2} = \sqrt {4,235} \approx 2,06\)

c) Vũng Tàu có nhiệt độ không khí trung bình tháng đồng đều hơn vì độ lệch chuẩn nhỏ hơn

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 3 trang 93 SGK Toán 12 tập 1 - Cánh diều đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 3 trang 93 SGK Toán 12 tập 1 - Cánh diều: Tổng quan

Bài tập 3 trang 93 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại vô cùng để giải quyết các bài toán cụ thể. Việc nắm vững các định nghĩa, tính chất và các phương pháp tính giới hạn là yếu tố then chốt để hoàn thành tốt bài tập này.

Nội dung bài tập 3 trang 93 SGK Toán 12 tập 1 - Cánh diều

Bài tập 3 bao gồm các câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của hàm số tại một điểm hoặc tại vô cùng. Các hàm số thường gặp trong bài tập này là hàm đa thức, hàm hữu tỉ và các hàm số đặc biệt khác. Để giải quyết bài tập này, học sinh cần:

  • Xác định đúng loại giới hạn cần tính (giới hạn tại một điểm, giới hạn tại vô cùng, giới hạn một bên).
  • Áp dụng các định nghĩa, tính chất và các phương pháp tính giới hạn phù hợp.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Lời giải chi tiết bài tập 3 trang 93 SGK Toán 12 tập 1 - Cánh diều

Câu a)

Để giải câu a, ta cần tính giới hạn của hàm số f(x) = (x^2 - 1) / (x - 1) khi x tiến tới 1. Ta có thể phân tích tử số thành (x - 1)(x + 1). Khi đó, giới hạn trở thành lim (x->1) (x + 1) = 2.

Câu b)

Đối với câu b, ta cần tính giới hạn của hàm số g(x) = (x^3 + 8) / (x + 2) khi x tiến tới -2. Tương tự như câu a, ta có thể phân tích tử số thành (x + 2)(x^2 - 2x + 4). Khi đó, giới hạn trở thành lim (x->-2) (x^2 - 2x + 4) = 12.

Câu c)

Câu c yêu cầu tính giới hạn của hàm số h(x) = (sqrt(x + 4) - 2) / x khi x tiến tới 0. Để giải quyết bài toán này, ta có thể nhân cả tử và mẫu với liên hợp của tử số, tức là (sqrt(x + 4) + 2). Khi đó, giới hạn trở thành lim (x->0) 1 / (sqrt(x + 4) + 2) = 1/4.

Các phương pháp tính giới hạn thường dùng

Trong quá trình giải bài tập về giới hạn, học sinh có thể sử dụng các phương pháp sau:

  • Phương pháp phân tích thành nhân tử: Sử dụng để khử các yếu tố gây ra dạng vô định.
  • Phương pháp nhân với liên hợp: Sử dụng để khử các căn thức trong biểu thức.
  • Phương pháp chia cả tử và mẫu cho x: Sử dụng để tính giới hạn tại vô cùng.
  • Sử dụng các định lý về giới hạn: Định lý về giới hạn của tổng, hiệu, tích, thương và hàm hợp.

Lưu ý khi giải bài tập về giới hạn

Để giải bài tập về giới hạn một cách hiệu quả, học sinh cần lưu ý những điều sau:

  • Nắm vững các định nghĩa, tính chất và các phương pháp tính giới hạn.
  • Phân tích kỹ đề bài để xác định đúng loại giới hạn cần tính.
  • Sử dụng các phương pháp tính giới hạn phù hợp với từng bài toán cụ thể.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập vận dụng

Để củng cố kiến thức về giới hạn, bạn có thể thử giải các bài tập sau:

  1. Tính giới hạn của hàm số f(x) = (x^2 - 4) / (x - 2) khi x tiến tới 2.
  2. Tính giới hạn của hàm số g(x) = (sqrt(x) - 1) / (x - 1) khi x tiến tới 1.
  3. Tính giới hạn của hàm số h(x) = (1/x) khi x tiến tới vô cùng.

Kết luận

Bài tập 3 trang 93 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính giới hạn. Hy vọng với những hướng dẫn chi tiết và các phương pháp giải quyết bài tập được trình bày trong bài viết này, bạn sẽ tự tin hơn trong việc học tập môn Toán.

Tài liệu, đề thi và đáp án Toán 12