Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 1 - Cánh diều. Bài viết này sẽ giúp bạn giải quyết triệt để bài tập 3 trang 63, nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất.
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Tính a.(overrightarrow {A'B} .overrightarrow {D'C} ;overrightarrow {D'A} .overrightarrow {BC} ) b, Các góc (left( {overrightarrow {A'D} ,overrightarrow {B'C'} } right);left( {overrightarrow {AD',} overrightarrow {BD} } right))
Đề bài
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Tính
a.\(\overrightarrow {A'B} .\overrightarrow {D'C'} ;\overrightarrow {D'A} .\overrightarrow {BC} \)
b,Các góc \(\left( {\overrightarrow {A'D} ,\overrightarrow {B'C'} } \right);\left( {\overrightarrow {AD',} \overrightarrow {BD} } \right)\)
Phương pháp giải - Xem chi tiết
Vẽ hình
Áp dụng phương pháp tích vô hướng của hai vecto trong không gian
Lời giải chi tiết
a, .\(\overrightarrow {A'B} .\overrightarrow {D'C'} = \left( {\overrightarrow {A'B'} + \overrightarrow {B'B} } \right).\overrightarrow {D'C'} = {a^2}\)
\(\overrightarrow {D'A} .\overrightarrow {BC} = \left( {\overrightarrow {D'A'} + \overrightarrow {A'A} } \right).\overrightarrow {BC} = - {a^2}\)
b,Góc \(\left( {\overrightarrow {A'D} ,\overrightarrow {B'C'} } \right)\)
Ta có: A’D//B'C nên \(\left( {\overrightarrow {A'D} ,\overrightarrow {B'C'} } \right) = \left( {\overrightarrow {B'C} ,\overrightarrow {B'C'} } \right) = 45 \)
Góc \(\left( {\overrightarrow {AD',} \overrightarrow {BD} } \right)\)
Ta có: AD'//BC' nên \(\left( {\overrightarrow {AD',} \overrightarrow {BD} } \right) = \left( {\overrightarrow {BC',} \overrightarrow {BD} } \right) \)
Mặt khác C'BD là tam giác đều nên \(\left( {\overrightarrow {BC',} \overrightarrow {BD} } \right) = 60 \)
Bài tập 3 trang 63 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Đây là một phần kiến thức quan trọng, nền tảng cho các chương trình học toán cao hơn. Bài tập này yêu cầu học sinh vận dụng các định nghĩa và tính chất của giới hạn để giải quyết các bài toán cụ thể.
Bài tập 3 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của các hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số phức tạp hơn. Để giải quyết bài tập này, học sinh cần nắm vững các phương pháp tính giới hạn như phương pháp chia, phương pháp nhân liên hợp, và phương pháp sử dụng định lý giới hạn.
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 3 trang 63 SGK Toán 12 tập 1 - Cánh diều:
Để tính giới hạn của hàm số tại một điểm, ta có thể thay trực tiếp giá trị của điểm đó vào hàm số. Nếu kết quả là một số thực, thì đó là giới hạn của hàm số tại điểm đó. Nếu kết quả là một dạng vô định, ta cần sử dụng các phương pháp khác để tính giới hạn.
Ví dụ, để tính limx→2 (x2 - 4) / (x - 2), ta có thể phân tích tử số thành nhân tử:
(x2 - 4) / (x - 2) = (x - 2)(x + 2) / (x - 2) = x + 2
Vậy, limx→2 (x2 - 4) / (x - 2) = limx→2 (x + 2) = 4
Tương tự như câu a, ta có thể áp dụng các phương pháp tính giới hạn để giải quyết bài toán.
Đối với các hàm số phức tạp hơn, ta có thể cần sử dụng các định lý giới hạn hoặc các kỹ thuật biến đổi đại số để đơn giản hóa biểu thức trước khi tính giới hạn.
Kiến thức về giới hạn có ứng dụng rộng rãi trong nhiều lĩnh vực của toán học và khoa học kỹ thuật, bao gồm:
Để củng cố kiến thức về giới hạn, bạn có thể luyện tập thêm các bài tập sau:
Bài tập | Nội dung |
---|---|
Bài 1 | Tính limx→3 (x2 - 9) / (x - 3) |
Bài 2 | Tính limx→0 sin(x) / x |
Bài tập 3 trang 63 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh hiểu rõ hơn về khái niệm giới hạn và các phương pháp tính giới hạn. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, bạn sẽ tự tin hơn trong quá trình học tập và giải quyết các bài toán liên quan đến giới hạn.