Chào mừng các em học sinh đến với lời giải chi tiết bài tập 3 trang 102 SGK Toán 12 tập 2 - Cánh diều. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải bài tập hiệu quả, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Bài tập 3 thuộc chương trình học Toán 12 tập 2, tập trung vào các kiến thức về tích phân. Việc giải bài tập này đòi hỏi các em phải nắm vững các định nghĩa, tính chất và công thức liên quan đến tích phân.
Một loại linh kiện do hai nhà máy số I, số II cùng sản xuất. Tỉ lệ phế phẩm của các nhà máy I, II lần lượt là: 4%; 3%. Trong một lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó. a) Tính xác suất để linh kiện được lấy ra là linh kiện tốt. b) Giả sử linh kiện được lấy ra là linh kiện phế phẩm. Xác suất linh kiện đó do nhà máy nào sản xuất là cao hơn?
Đề bài
Một loại linh kiện do hai nhà máy số I, số II cùng sản xuất. Tỉ lệ phế phẩm của các nhà máy I, II lần lượt là: 4%; 3%. Trong một lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó.
a) Tính xác suất để linh kiện được lấy ra là linh kiện tốt.
b) Giả sử linh kiện được lấy ra là linh kiện phế phẩm. Xác suất linh kiện đó do nhà máy nào sản xuất là cao hơn?
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B với \(0 < P\left( B \right) < 1\), ta có \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
+ Sử dụng kiến thức về công thức Bayes để tính: Với hai biến cố A, B mà \(P\left( A \right) > 0,P\left( B \right) > 0\), ta có: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\).
Lời giải chi tiết
a) Xét hai biến cố: A: “Linh kiện lấy ra là linh kiện tốt”, B: “Linh kiện lấy ra do nhà máy I sản xuất”.
Vì nhà máy I có 80 sản phẩm, nhà máy II có 120 sản phẩm nên
\(P\left( B \right) = 0,4;P\left( {\overline B } \right) = 0,6.\) Lại có: \(P\left( {A|B} \right) = 0,96;P\left( {A|\overline B } \right) = 0,97\).
Áp dụng công thức xác suất toàn phần ta có:
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,4.0,96 + 0,6.0,97 = 0,966\).
b) Gọi C là biến cố “Linh kiện được lấy ra từ lô hàng là linh kiện phế phẩm”. Khi đó, \(P\left( C \right) = 1 - P\left( A \right) = 0,034\). Theo đề bài ta có: \(P\left( {C|B} \right) = 0,04\).
Nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất sản phẩm đó do nhà máy I sản xuất là: \(P\left( {B|C} \right) = \frac{{P\left( B \right).P\left( {C|B} \right)}}{{P\left( C \right)}} = \frac{{0,4.0,04}}{{0,034}} = \frac{8}{{17}}\).
Nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất sản phẩm đó do nhà máy II sản xuất là: \(P\left( {\overline B |C} \right) = 1 - P\left( {B|C} \right) = 1 - \frac{8}{{17}} = \frac{9}{{17}}\).
Vì \(\frac{9}{{17}} > \frac{8}{{17}}\) nên nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất linh kiện đó do nhà máy II sản xuất là cao hơn.
Bài tập 3 trang 102 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng trong chương trình học tích phân. Bài tập này yêu cầu học sinh vận dụng kiến thức về tích phân để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về tích phân, bao gồm:
Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết từng bước. Bài tập 3 thường bao gồm các dạng bài sau:
Ví dụ: Tính tích phân ∫ab f(x) dx
Cách giải:
Ví dụ: Tìm tích phân ∫ f(x) dx
Cách giải:
Tìm một hàm số F(x) sao cho F'(x) = f(x). Lưu ý rằng tích phân không xác định có vô số nghiệm, vì ta có thể cộng thêm một hằng số C vào kết quả.
Ví dụ: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b.
Cách giải:
Sử dụng công thức tính diện tích hình phẳng: S = ∫ab |f(x)| dx
Ngoài SGK Toán 12 tập 2 - Cánh diều, các em có thể tham khảo thêm các tài liệu sau để nâng cao kiến thức và kỹ năng giải bài tập:
Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin hơn khi giải bài tập 3 trang 102 SGK Toán 12 tập 2 - Cánh diều. Chúc các em học tập tốt!