Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Cánh diều. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 5 trang 82, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất.
Cho vecto \(\overrightarrow u = (1; - 1;3)\). Tọa độ của vecto \( - 3\overrightarrow u \) là: A. (3;-3;9) B. (3;-3;-9) C. (-3;3;-9) D. (3;3;9)
Đề bài
Cho vecto \(\overrightarrow u = (1; - 1;3)\). Tọa độ của vecto \( - 3\overrightarrow u \) là:
A. (3;-3;9)
B. (3;-3;-9)
C. (-3;3;-9)
D. (3;3;9)
Phương pháp giải - Xem chi tiết
Áp dụng quy tắc nhân vecto với một số
Lời giải chi tiết
\( - 3\overrightarrow u = - 3(1; - 1;3) = ( - 3;3; - 9)\)
Chọn C
Bài tập 5 trang 82 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là vô cùng quan trọng để đạt kết quả tốt trong các kỳ thi sắp tới.
Bài tập 5 bao gồm các câu hỏi yêu cầu tính giới hạn của hàm số tại một điểm, sử dụng định nghĩa và các tính chất của giới hạn. Các hàm số trong bài tập có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số phức tạp hơn. Để giải quyết bài tập này, học sinh cần:
Để giải câu a, ta cần tính giới hạn của hàm số f(x) = (x^2 - 1) / (x - 1) khi x tiến tới 1. Ta có thể phân tích tử số thành (x - 1)(x + 1), sau đó rút gọn biểu thức. Khi đó, giới hạn của f(x) khi x tiến tới 1 bằng giới hạn của (x + 1) khi x tiến tới 1, tức là 2.
Đối với câu b, ta cần tính giới hạn của hàm số g(x) = (x^3 + 8) / (x + 2) khi x tiến tới -2. Ta có thể phân tích tử số thành (x + 2)(x^2 - 2x + 4), sau đó rút gọn biểu thức. Khi đó, giới hạn của g(x) khi x tiến tới -2 bằng giới hạn của (x^2 - 2x + 4) khi x tiến tới -2, tức là 12.
Câu c yêu cầu tính giới hạn của hàm số h(x) = (√(x + 1) - 1) / x khi x tiến tới 0. Để giải quyết bài tập này, ta có thể nhân cả tử và mẫu với liên hợp của tử số, tức là (√(x + 1) + 1). Sau đó, ta rút gọn biểu thức và tính giới hạn. Kết quả là 1/2.
Ngoài bài tập 5, còn rất nhiều bài tập tương tự về giới hạn hàm số trong SGK Toán 12 tập 1 - Cánh diều. Để giải quyết các bài tập này, học sinh cần nắm vững các phương pháp sau:
Khi giải bài tập về giới hạn hàm số, học sinh cần lưu ý những điều sau:
Bài tập 5 trang 82 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về giới hạn hàm số. Hy vọng rằng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, các bạn học sinh sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.