Chào mừng các em học sinh đến với lời giải chi tiết bài tập 4 trang 16 SGK Toán 12 tập 2 - Cánh diều. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập Toán 12.
Bài tập 4 trang 16 thuộc chương trình học Toán 12 tập 2, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Nguyên hàm của hàm số (f(x) = 1 - {tan ^2}(x)) bằng: A. (2 - tan x + C) B. (2x - tan x + C) C. (x - frac{{{{tan }^3}x}}{3} + C) D. ( - 2tan x + C)
Đề bài
Nguyên hàm của hàm số \(f(x) = 1 - {\tan ^2}(x)\) bằng:
A. \(2 - \tan x + C\)
B. \(2x - \tan x + C\)
C. \(x - \frac{{{{\tan }^3}x}}{3} + C\)
D. \( - 2\tan x + C\)
Phương pháp giải - Xem chi tiết
\(\int {f(x)dx = F(x) + C} \) với F’(x) = f(x)
Lời giải chi tiết
\(\int {\left( {1 - {{\tan }^2}x} \right)} dx = \int {(2 - (1 + {{\tan }^2}x))dx = } \int {(2 - \frac{1}{{{{\cos }^2}x}})dx = } 2x - \tan + C\)
Chọn B
Bài tập 4 trang 16 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng trong chương trình học, yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc khảo sát hàm số.
Bài tập 4 thường xoay quanh việc tìm đạo hàm của hàm số, xét dấu đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số, tìm cực trị của hàm số và vẽ đồ thị hàm số. Cụ thể, bài tập có thể yêu cầu:
Để giải bài tập 4 trang 16 SGK Toán 12 tập 2 - Cánh diều, học sinh có thể áp dụng các phương pháp sau:
Bài toán: Cho hàm số y = x3 - 3x2 + 2. Tìm khoảng đồng biến, nghịch biến và cực trị của hàm số.
Giải:
Để giải bài tập 4 trang 16 SGK Toán 12 tập 2 - Cánh diều một cách chính xác và hiệu quả, học sinh cần lưu ý:
Ngoài SGK Toán 12 tập 2 - Cánh diều, học sinh có thể tham khảo thêm các tài liệu sau để hỗ trợ học tập:
Bài tập 4 trang 16 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết và phương pháp giải hiệu quả trên đây, các em học sinh sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán 12.