Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 8 trang 16 SGK Toán 12 tập 2 theo chương trình Cánh diều, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, dễ hiểu và phù hợp với nhu cầu của học sinh, sinh viên.
Một quần thể vi khuẩn ban đầu gồm 500 vi khuẩn, sau đó bắt đầu tăng trưởng. Gọi P(t) là số lượng vi khuẩn của quần thể đó tại thời điểm t, trong đó t tính theo ngày \((0 \le t \le 10)\). Tốc độ tăng trưởng của quần thể vi khuẩn đó cho bởi hàm số \(P'(t) = k\sqrt t \), trong đó k là hằng số. Sau 1 ngày, số lượng vi khuẩn của quần thể đó đã tăng lên thành 600 vi khuẩn. Tính số lượng vi khuẩn của quần thể đó sau 7 ngày (làm tròn kết quả đến hàng đơn vị).
Đề bài
Một quần thể vi khuẩn ban đầu gồm 500 vi khuẩn, sau đó bắt đầu tăng trưởng. Gọi P(t) là số lượng vi khuẩn của quần thể đó tại thời điểm t, trong đó t tính theo ngày \((0 \le t \le 10)\). Tốc độ tăng trưởng của quần thể vi khuẩn đó cho bởi hàm số \(P'(t) = k\sqrt t \), trong đó k là hằng số. Sau 1 ngày, số lượng vi khuẩn của quần thể đó đã tăng lên thành 600 vi khuẩn. Tính số lượng vi khuẩn của quần thể đó sau 7 ngày (làm tròn kết quả đến hàng đơn vị).
Phương pháp giải - Xem chi tiết
Tìm hàm số biểu diễn số lượng vi khuẩn thông qua hàm số tốc độ tăng trưởng của quần thể
Lời giải chi tiết
\(\int {P'(t)} dt = \int {k\sqrt t dt} = \frac{2}{3}k\sqrt {{t^3}} + C = P(t)\)
\(P(0) = \frac{2}{3}k\sqrt {{0^3}} + C = 500 \Rightarrow C = 500\)
\(P(1) = \frac{2}{3}k\sqrt {{1^3}} + 500 = 600 \Rightarrow k = 150\)
Vậy số lượng vi khuẩn của quần thể đó được biểu diễn bởi hàm số \(P(t) = 100\sqrt {{t^3}} + 500\)
Số lượng vi khuẩn của quần thể đó sau 7 ngày là: \(P(7) = 100\sqrt {{7^3}} + 500 = 2352\) (con)
Bài tập 8 trang 16 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành tốt bài tập này.
Bài tập 8 bao gồm các câu hỏi liên quan đến việc tính đạo hàm của các hàm số lượng giác, hàm số mũ, hàm số logarit và các hàm số hợp. Các bài tập được thiết kế với mức độ khó tăng dần, từ đơn giản đến phức tạp, giúp học sinh rèn luyện kỹ năng và củng cố kiến thức.
Lời giải:
Sử dụng công thức đạo hàm của hàm hợp: (u(v(x)))' = u'(v(x)) * v'(x)
Đặt u(v) = sin(v) và v(x) = 2x
Khi đó, u'(v) = cos(v) và v'(x) = 2
Vậy, y' = cos(2x) * 2 = 2cos(2x)
Lời giải:
Sử dụng công thức đạo hàm của hàm hợp: (u(v(x)))' = u'(v(x)) * v'(x)
Đặt u(v) = ev và v(x) = x2
Khi đó, u'(v) = ev và v'(x) = 2x
Vậy, y' = ex2 * 2x = 2xex2
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Bài tập 8 trang 16 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này. Chúc bạn học tập tốt!