Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 12 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp lời giải chi tiết và dễ hiểu cho bài tập 1 trang 102 SGK Toán 12 tập 2, thuộc chương trình Toán 12 Cánh diều.
Chúng tôi hiểu rằng việc tự học và làm bài tập có thể gặp nhiều khó khăn. Vì vậy, đội ngũ giaitoan.edu.vn đã biên soạn lời giải một cách cẩn thận, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho hai biến cố A, B với \(P\left( B \right) = 0,6;P\left( {A|B} \right) = 0,7\) và \(P\left( {A|\overline B } \right) = 0,4\). Khi đó, \(P\left( A \right)\) bằng A. 0,7. B. 0,4. C. 0,58. D. 0,52.
Đề bài
Cho hai biến cố A, B với \(P\left( B \right) = 0,6;P\left( {A|B} \right) = 0,7\) và \(P\left( {A|\overline B } \right) = 0,4\). Khi đó, \(P\left( A \right)\) bằng
A. 0,7.
B. 0,4.
C. 0,58.
D. 0,52.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B với \(0 < P\left( B \right) < 1\), ta có \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Lời giải chi tiết
Ta có: \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 0,4\).
Theo công thức xác suất toàn phần ta có:
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,6.0,7 + 0,4.0,4 = 0,58\).
Chọn C
Bài tập 1 trang 102 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về đạo hàm của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế, liên quan đến việc tìm đạo hàm của hàm số tại một điểm hoặc trên một khoảng.
Bài tập 1 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:
Để giải quyết bài tập 1 trang 102 SGK Toán 12 tập 2 - Cánh diều một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 1 trang 102 SGK Toán 12 tập 2 - Cánh diều:
Đề bài: Tính đạo hàm của hàm số f(x) = x2 + 3x - 2 tại x = 1.
Lời giải:
f'(x) = 2x + 3
f'(1) = 2(1) + 3 = 5
Vậy, đạo hàm của hàm số f(x) tại x = 1 là 5.
Đề bài: Tìm đạo hàm của hàm số g(x) = sin(x) trên khoảng (0, π).
Lời giải:
g'(x) = cos(x)
Vậy, đạo hàm của hàm số g(x) trên khoảng (0, π) là cos(x).
Đề bài: Một vật chuyển động theo phương trình s(t) = t3 - 6t2 + 9t + 2, trong đó s(t) là quãng đường đi được sau thời gian t (giây). Tính vận tốc của vật tại thời điểm t = 2 giây.
Lời giải:
Vận tốc của vật là đạo hàm của quãng đường theo thời gian: v(t) = s'(t)
s'(t) = 3t2 - 12t + 9
v(2) = 3(2)2 - 12(2) + 9 = 12 - 24 + 9 = -3
Vậy, vận tốc của vật tại thời điểm t = 2 giây là -3 m/s.
Bài tập 1 trang 102 SGK Toán 12 tập 2 - Cánh diều là một bài tập cơ bản về đạo hàm, giúp học sinh rèn luyện kỹ năng tính đạo hàm và vận dụng đạo hàm để giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, các em học sinh sẽ tự tin hơn trong quá trình học tập môn Toán.