Logo Header
  1. Môn Toán
  2. Giải bài tập 5 trang 8 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 5 trang 8 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 5 trang 8 SGK Toán 12 tập 2 - Cánh diều

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài tập 5 trang 8 SGK Toán 12 tập 2 - Cánh diều. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất theo chương trình học. Hãy cùng giaitoan.edu.vn khám phá lời giải chi tiết ngay sau đây!

Tại một lễ hội dân gian, tốc độ thay đổi lượng khách tham dự được biểu diễn bằng hàm số \(B'(t) = 20{t^3} - 300{t^2} + 1000t\) trong đó t tính bằng giờ (\(0 \le t \le 15\)), B’(t) tính bằng khách/giờ Sau một giờ, 500 người đã có mặt tại lễ hội a) Viết công thức của hàm số B(t) biểu diễn số lượng khách tham dự lễ hội với \(0 \le t \le 15\) b) Sau 3 giờ sẽ có bao nhiêu khách tham dự lễ hội? c) Số lượng khách tham dự lễ hội lớn nhất là bao nhiêu? d) Tại thời điểm nào thì tốc độ thay đổi lượn

Đề bài

Tại một lễ hội dân gian, tốc độ thay đổi lượng khách tham dự được biểu diễn bằng hàm số

\(B'(t) = 20{t^3} - 300{t^2} + 1000t\)

trong đó t tính bằng giờ (\(0 \le t \le 15\)), B’(t) tính bằng khách/giờ

Sau một giờ, 500 người đã có mặt tại lễ hội

a) Viết công thức của hàm số B(t) biểu diễn số lượng khách tham dự lễ hội với \(0 \le t \le 15\)

b) Sau 3 giờ sẽ có bao nhiêu khách tham dự lễ hội?

c) Số lượng khách tham dự lễ hội lớn nhất là bao nhiêu?

d) Tại thời điểm nào thì tốc độ thay đổi lượng khách tham gia dự lễ hội là lớn nhất?

Phương pháp giải - Xem chi tiếtGiải bài tập 5 trang 8 SGK Toán 12 tập 2 - Cánh diều 1

a) Áp dụng công thức tìm nguyên hàm của một hàm số

b) Thay số vào công thức đã tìm được ở phần a)

c) Khảo sát hàm số B(t) để tìm GTLN

d) Khảo sát hàm số B’(t) để tìm GTLN

Lời giải chi tiết

a) \(\int {B'(t)} dt = \int {\left( {20{t^3} - 300{t^2} + 1000t} \right)} dt = 5{t^4} - 100{t^3} + 500{t^2} + C\)

B(1) = 500 <=> \(5 - 100 + 500 + C = 500 \Leftrightarrow C = 95\)

Vậy \(B(t) = 5{t^4} - 100{t^3} + 500{t^2} + 95\)

b) \(B(3) = {5.3^4} - {100.3^3} + {500.3^2} + 95 = 2300\)

Vậy sau 3h sẽ có 2300 khách tham dự lễ hội

c) \(B'(t) = 20{t^3} - 300{t^2} + 1000t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 5\\t = 10\end{array} \right.\)

Bảng biến thiên:

Giải bài tập 5 trang 8 SGK Toán 12 tập 2 - Cánh diều 2

Từ bảng biển thiên ta thấy, B(t) max tại t = 15

Vậy số lượng khách tham dự lớn nhất là: 28220 khách

d) \(B''(t) = 60{t^2} - 600t + 1000 = 0 \Leftrightarrow \left[ \begin{array}{l}t = \frac{{15 - 5\sqrt 3 }}{3}\\t = \frac{{15 + 5\sqrt 3 }}{3}\end{array} \right.\)

Bảng biến thiên:

Giải bài tập 5 trang 8 SGK Toán 12 tập 2 - Cánh diều 3

Từ bảng biển thiên ta thấy, B’(t) max tại t = 15

Vậy tại thời điểm t = 15 giờ thì tốc độ thay đổi lượng khách tham gia dự lễ hội là lớn nhất

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 5 trang 8 SGK Toán 12 tập 2 - Cánh diều đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng học toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 5 trang 8 SGK Toán 12 tập 2 - Cánh diều: Tổng quan

Bài tập 5 trang 8 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho các môn học ở bậc đại học.

Nội dung bài tập 5 trang 8 SGK Toán 12 tập 2 - Cánh diều

Bài tập 5 thường xoay quanh việc tính đạo hàm của các hàm số lượng giác, hàm số mũ, hàm số logarit và các hàm hợp. Để giải bài tập này hiệu quả, học sinh cần:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Sử dụng thành thạo các quy tắc tính đạo hàm (quy tắc tích, quy tắc thương, quy tắc hàm hợp).
  • Biết cách biến đổi các biểu thức đại số để đơn giản hóa quá trình tính đạo hàm.

Lời giải chi tiết bài tập 5 trang 8 SGK Toán 12 tập 2 - Cánh diều

Để giúp học sinh hiểu rõ hơn, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập 5. (Ở đây sẽ là lời giải chi tiết cho từng câu hỏi của bài tập 5, ví dụ:)

Câu a: Tính đạo hàm của hàm số y = sin(2x)

Áp dụng quy tắc hàm hợp, ta có:

y' = cos(2x) * (2x)' = 2cos(2x)

Câu b: Tính đạo hàm của hàm số y = ex2

Áp dụng quy tắc hàm hợp, ta có:

y' = ex2 * (x2)' = 2xex2

Câu c: Tính đạo hàm của hàm số y = ln(x + 1)

Áp dụng công thức đạo hàm của hàm logarit, ta có:

y' = 1/(x + 1) * (x + 1)' = 1/(x + 1)

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài tập 5, còn rất nhiều bài tập tương tự về đạo hàm. Để giải quyết các bài tập này, học sinh có thể áp dụng các phương pháp sau:

  1. Phân tích cấu trúc hàm số để xác định quy tắc đạo hàm phù hợp.
  2. Biến đổi biểu thức đại số để đơn giản hóa quá trình tính đạo hàm.
  3. Kiểm tra lại kết quả bằng cách tính đạo hàm ngược lại.

Lưu ý khi giải bài tập về đạo hàm

Khi giải bài tập về đạo hàm, học sinh cần lưu ý những điều sau:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Sử dụng đúng quy tắc đạo hàm.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải bài tập.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính vận tốc và gia tốc trong vật lý.
  • Tìm cực trị của hàm số trong kinh tế.
  • Xây dựng các mô hình toán học trong khoa học kỹ thuật.

Tổng kết

Bài tập 5 trang 8 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, học sinh sẽ tự tin hơn khi giải các bài tập tương tự. Chúc các em học tốt!

Công thứcMô tả
(u + v)'Đạo hàm của tổng hai hàm số
(u * v)'Đạo hàm của tích hai hàm số
(u / v)'Đạo hàm của thương hai hàm số

Tài liệu, đề thi và đáp án Toán 12