Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 1 - Cánh diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải quyết bài tập 6 trang 46 một cách hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn tự tin hơn trong quá trình ôn tập và làm bài.
Tìm các đường TCN và TCĐ của mỗi hàm số sau: A. (y = frac{{5x + 1}}{{3x - 2}}) B. (y = frac{{2{x^3} - 3x}}{{{x^3} + 1}}) C. (y = frac{x}{{sqrt {{x^2} - 4} }})
Đề bài
Tìm các đường TCN và TCĐ của mỗi hàm số sau:
A. \(y = \frac{{5x + 1}}{{3x - 2}}\)
B. \(y = \frac{{2{x^3} - 3x}}{{{x^3} + 1}}\)
C. \(y = \frac{x}{{\sqrt {{x^2} - 4} }}\)
Phương pháp giải - Xem chi tiết
Tìm TXD.
Phân tích hàm số.
Tìm TCD, TCN.
Lời giải chi tiết
A. \(y = \frac{{5x + 1}}{{3x - 2}}\)
Tập xác định: \(\mathbb{R}\backslash \left\{ {\frac{2}{3}} \right\}\)
Đặt mẫu: \(3x - 2 = 0\) → \(x = \frac{2}{3}\).
Ta có: \(\mathop {\lim }\limits_{x \to \frac{2}{3}} (5x + 1) = 5.\frac{2}{3} + 1 = \frac{{13}}{3}\); \(\mathop {\lim }\limits_{x \to \frac{2}{3}} (3x - 2) = 3.\frac{2}{3} - 2 = 0\).
Suy ra \(\mathop {\lim }\limits_{x \to \frac{2}{3}} \frac{{5x + 1}}{{3x - 2}} = \infty \).
Vậy hàm số có TCĐ là: \(x = \frac{2}{3}\).
Ta có:
\(\mathop {\lim }\limits_{x \to \pm \infty } \frac{{5x + 1}}{{3x - 2}} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{5 + \frac{1}{x}}}{{3 - \frac{2}{x}}} = \frac{5}{3}\).
Vậy, hàm số có TCN là: \(y = \frac{5}{3}\).
B. \(y = \frac{{2{x^3} - 3x}}{{{x^3} + 1}}\)
TXĐ: \(\mathbb{R}\backslash \left\{ { - 1} \right\}\)
Đặt mẫu \({x^3} + 1 = 0\) → \(x = - 1\).
Ta có: \(\mathop {\lim }\limits_{x \to - 1} (2{x^3} - 3x) = 2.{( - 1)^3} - 3.( - 1) = 1\); \(\mathop {\lim }\limits_{x \to - 1} ({x^3} + 1) = {( - 1)^3} + 1 = 0\).
Suy ra \(\mathop {\lim }\limits_{x \to - 1} \frac{{2{x^3} - 3x}}{{{x^3} + 1}} = \infty \).
Vậy hàm số có TCĐ là: \(x = - 1\).
Ta có:
\(\mathop {\lim }\limits_{x \to \pm \infty } \frac{{2{x^3} - 3x}}{{{x^3} + 1}} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{2 - \frac{3}{x}}}{{1 + \frac{1}{{{x^3}}}}} = 2\).
Vậy hàm số có TCN là: \(y = 2\).
C. \(y = \frac{x}{{\sqrt {{x^2} - 4} }}\)
TXĐ: \(x \in \left[ { - \infty , - 2} \right] \cup \left[ {2, + \infty } \right]\)
Đặt mẫu \(\sqrt {{x^2} - 4} = 0\) → \(x = - 2;\;x = 2\).
Vậy hàm số có TCĐ là: \(x = - 2;\;x = 2\).
Ta có
\(\mathop {\lim }\limits_{x \to + \infty } \frac{x}{{\sqrt {{x^2} - 4} }} = \mathop {\lim }\limits_{x \to + \infty } \frac{x}{{x\sqrt {1 - \frac{4}{{{x^2}}}} }} = \frac{1}{{\sqrt 1 }} = 1\);
\(\mathop {\lim }\limits_{x \to - \infty } \frac{x}{{\sqrt {{x^2} - 4} }} = \mathop {\lim }\limits_{x \to - \infty } \frac{x}{{ - x\sqrt {1 - \frac{4}{{{x^2}}}} }} = \frac{1}{{ - \sqrt 1 }} = - 1\).
Vậy hàm số có TCN là: \(y = 1;\;y = - 1\).
Bài tập 6 trang 46 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là vô cùng quan trọng để đạt kết quả tốt trong các kỳ thi.
Bài tập 6 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số khác. Để giải quyết bài tập này, học sinh cần:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 6:
Để tính giới hạn của hàm số tại một điểm, ta có thể sử dụng phương pháp trực tiếp thay giá trị của điểm đó vào hàm số. Tuy nhiên, nếu việc thay trực tiếp dẫn đến dạng vô định, ta cần sử dụng các phương pháp khác như phân tích thành nhân tử, nhân liên hợp, hoặc áp dụng quy tắc L'Hopital.
Ví dụ, nếu hàm số là f(x) = (x^2 - 1) / (x - 1), ta có thể phân tích thành nhân tử như sau: f(x) = (x - 1)(x + 1) / (x - 1). Khi đó, ta có thể rút gọn biểu thức thành f(x) = x + 1. Vậy, giới hạn của hàm số tại x = 1 là 1 + 1 = 2.
Tương tự như câu a, ta cần xác định đúng dạng của hàm số và áp dụng các quy tắc tính giới hạn phù hợp. Nếu hàm số có chứa căn thức, ta có thể nhân liên hợp để khử căn thức và đơn giản hóa biểu thức.
Đối với các hàm số phức tạp hơn, ta có thể cần sử dụng quy tắc L'Hopital. Quy tắc này cho phép ta tính giới hạn của một hàm số bằng cách lấy đạo hàm của tử số và mẫu số, sau đó tính giới hạn của thương hai đạo hàm đó.
Ngoài bài tập 6, còn rất nhiều bài tập tương tự về giới hạn hàm số. Để giải quyết các bài tập này, học sinh cần nắm vững các kiến thức sau:
Để củng cố kiến thức và kỹ năng giải bài tập về giới hạn hàm số, học sinh nên luyện tập thêm các bài tập khác trong SGK và các tài liệu tham khảo. Ngoài ra, học sinh cũng có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học luyện thi để được hướng dẫn chi tiết hơn.
Bài tập 6 trang 46 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh hiểu rõ hơn về giới hạn hàm số. Bằng cách nắm vững kiến thức nền tảng và kỹ năng giải bài tập, học sinh có thể tự tin hơn trong quá trình học tập và làm bài.
Dạng bài tập | Phương pháp giải |
---|---|
Hàm đa thức | Thay trực tiếp giá trị |
Hàm hữu tỉ | Phân tích thành nhân tử, nhân liên hợp |
Hàm số phức tạp | Quy tắc L'Hopital |