Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Cánh diều. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 1 trang 80, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất.
Trong không gian với hệ tọa độ Oxyz, cho (overrightarrow a = (2;3 - 2)) và (overrightarrow b = (3;1; - 1)). Tọa độ của vecto (overrightarrow a - overrightarrow b ) là:
Đề bài
Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a = (2;3 - 2)\) và \(\overrightarrow b = (3;1; - 1)\). Tọa độ của vecto \(\overrightarrow a - \overrightarrow b \) là:
A. (1;-2;1)
B. (5;4;-3)
C. (-1;2;-1)
D. (-1;2;-3)
Phương pháp giải - Xem chi tiết
Cho hai vectơ \(\overrightarrow a = ({a_1};{a_2};{a_3})\), \(\overrightarrow b = ({b_1};{b_2};{b_3})\), ta có \(\overrightarrow a - \overrightarrow b = ({a_1} - {b_1};{a_2} - {b_2};{a_3} - {b_3})\)
Lời giải chi tiết
\(\overrightarrow a - \overrightarrow b = (2 - 3;3 - 1; - 2 - ( - 1)) = ( - 1;2; - 1)\)
Chọn C
Bài tập 1 trang 80 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Đây là một phần kiến thức quan trọng, nền tảng cho các chương trình học toán cao hơn. Bài tập này yêu cầu học sinh vận dụng các định nghĩa và tính chất của giới hạn để giải quyết các bài toán cụ thể.
Bài tập 1 bao gồm các câu hỏi liên quan đến việc tính giới hạn của hàm số tại một điểm. Các hàm số có thể là hàm đa thức, hàm phân thức, hoặc các hàm số khác. Để giải quyết các bài tập này, học sinh cần nắm vững các phương pháp tính giới hạn sau:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 1 trang 80 SGK Toán 12 tập 1 - Cánh diều:
lim (x→2) (x^2 - 4) / (x - 2)
Lời giải: Ta có thể phân tích tử số thành nhân tử: (x^2 - 4) = (x - 2)(x + 2). Do đó, biểu thức trở thành: lim (x→2) (x - 2)(x + 2) / (x - 2) = lim (x→2) (x + 2) = 2 + 2 = 4.
lim (x→-1) (x^3 + 1) / (x + 1)
Lời giải: Ta có thể phân tích tử số thành nhân tử: (x^3 + 1) = (x + 1)(x^2 - x + 1). Do đó, biểu thức trở thành: lim (x→-1) (x + 1)(x^2 - x + 1) / (x + 1) = lim (x→-1) (x^2 - x + 1) = (-1)^2 - (-1) + 1 = 1 + 1 + 1 = 3.
lim (x→0) sin(x) / x
Lời giải: Đây là một giới hạn lượng giác cơ bản. Ta biết rằng lim (x→0) sin(x) / x = 1.
Ngoài bài tập 1 trang 80, bạn có thể tìm hiểu thêm về các khái niệm và tính chất của giới hạn sau:
Để củng cố kiến thức về giới hạn, bạn có thể luyện tập thêm các bài tập sau:
Bài tập 1 trang 80 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh hiểu rõ hơn về khái niệm và tính chất của giới hạn. Hy vọng rằng với lời giải chi tiết và những kiến thức mở rộng được cung cấp trong bài viết này, bạn sẽ tự tin hơn trong quá trình học tập môn Toán.