Logo Header
  1. Môn Toán
  2. Giải bài tập 4 trang 8 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 4 trang 8 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 4 trang 8 SGK Toán 12 tập 2 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 4 trang 8 SGK Toán 12 tập 2 theo chương trình Cánh diều. Chúng tôi cam kết cung cấp kiến thức chính xác và phương pháp giải bài tập hiệu quả nhất.

Một vườn ươm cây cảnh bán một cây sau 6 năm trồng và uốn tạo dáng. Tốc độ tăng trưởng trong suốt 6 năm được tính xấp xỉ bởi công thức \(h'(t) = 1,5t + 5\), trong đó h(t) (cm) là chiều cao của cây khi kết thúc t (năm). Cây con khi được trồng cao 12cm a) Tìm công thức chỉ chiều cao của cây sau t năm b) Khi được bán, cây cao bao nhiêu cm?

Đề bài

Một vườn ươm cây cảnh bán một cây sau 6 năm trồng và uốn tạo dáng. Tốc độ tăng trưởng trong suốt 6 năm được tính xấp xỉ bởi công thức \(h'(t) = 1,5t + 5\), trong đó h(t) (cm) là chiều cao của cây khi kết thúc t (năm). Cây con khi được trồng cao 12cm

a) Tìm công thức chỉ chiều cao của cây sau t năm

b) Khi được bán, cây cao bao nhiêu cm?

Phương pháp giải - Xem chi tiếtGiải bài tập 4 trang 8 SGK Toán 12 tập 2 - Cánh diều 1

Áp dụng công thức tìm nguyên hàm của một hàm số

Lời giải chi tiết

a) \(\int {h'(t)} dt = \int {\left( {1,5t + 5} \right)} dt = 0,75{t^2} + 5t + C\)

Vậy công thức chỉ chiều cao của cây sau t năm là: \(0,75{t^2} + 5t + C\)

b) Đặt \(H(t) = 0,75{t^2} + 5t + C\)

Tại t = 0 thì H(0) = 12 suy ra C = 12

Khi được bán, tức là sau 6 năm thì cây cao: \(H(6) = 0,{75.6^2} + 5.6 + 12 = 69cm\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 4 trang 8 SGK Toán 12 tập 2 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 4 trang 8 SGK Toán 12 tập 2 - Cánh diều: Tổng quan

Bài tập 4 trang 8 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và các ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để giải quyết thành công bài tập này.

Nội dung bài tập 4 trang 8 SGK Toán 12 tập 2 - Cánh diều

Bài tập 4 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc hàm số phức tạp.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số, tức là đạo hàm của đạo hàm bậc nhất.
  • Ứng dụng đạo hàm để giải quyết bài toán: Sử dụng đạo hàm để tìm cực trị của hàm số, khảo sát hàm số, hoặc giải các bài toán liên quan đến tốc độ biến thiên.

Phương pháp giải bài tập 4 trang 8 SGK Toán 12 tập 2 - Cánh diều

Để giải quyết bài tập 4 trang 8 SGK Toán 12 tập 2 - Cánh diều một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:

  1. Nắm vững các quy tắc tính đạo hàm: Bao gồm quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp, và các đạo hàm cơ bản của các hàm số lượng giác, mũ, logarit.
  2. Sử dụng bảng đạo hàm: Tham khảo bảng đạo hàm để nhanh chóng tìm ra đạo hàm của các hàm số thường gặp.
  3. Biến đổi hàm số: Đôi khi, cần biến đổi hàm số về dạng đơn giản hơn trước khi tính đạo hàm.
  4. Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa giải bài tập 4 trang 8 SGK Toán 12 tập 2 - Cánh diều

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = 3x2 + 4x - 5

Lưu ý khi giải bài tập 4 trang 8 SGK Toán 12 tập 2 - Cánh diều

  • Đọc kỹ đề bài: Hiểu rõ yêu cầu của bài toán trước khi bắt đầu giải.
  • Sử dụng đúng công thức: Áp dụng đúng các công thức đạo hàm và quy tắc tính đạo hàm.
  • Chú ý đến dấu: Cẩn thận với dấu âm khi tính đạo hàm.
  • Kiểm tra đơn vị: Nếu bài toán có đơn vị, hãy đảm bảo rằng kết quả cuối cùng có đơn vị phù hợp.

Bài tập luyện tập

Để củng cố kiến thức và kỹ năng giải bài tập, bạn có thể luyện tập thêm với các bài tập sau:

  • Tính đạo hàm của hàm số g(x) = sin(x) + cos(x).
  • Tìm đạo hàm cấp hai của hàm số h(x) = ex + ln(x).
  • Tìm cực trị của hàm số k(x) = x2 - 4x + 3.

Kết luận

Bài tập 4 trang 8 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm để giải quyết các bài toán thực tế. Hy vọng rằng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ tự tin hơn khi giải quyết bài tập này. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12