Logo Header
  1. Môn Toán
  2. Giải bài tập 7 trang 20 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 7 trang 20 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 7 trang 20 SGK Toán 12 tập 1 - Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 7 trang 20 SGK Toán 12 tập 1 - Cánh diều. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập Toán 12.

Bài tập 7 trang 20 thuộc chương trình học Toán 12 tập 1, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Ho ép khí quản co lại, ảnh hưởng đến tốc độ của không khí đi vào khí quản. Tốc độ của không khí đi vào khí quản khi ho được cho bởi công thức: \(V = k\left( {R - r} \right){r^2}\) với \(0 \le r < R\) Trong đó k là hằng số, R là bán kính bình thường của khí quan, r là bán kính khu quản khi ho. Hỏi bán kính của khí quản khi ho bằng bao nhiêu thì tốc độ của không khí đi vào khí quản là lớn nhất ?

Đề bài

Ho ép khí quản co lại, ảnh hưởng đến tốc độ của không khí đi vào khí quản. Tốc độ của không khí đi vào khí quản khi ho được cho bởi công thức:

\(V = k\left( {R - r} \right){r^2}\) với \(0 \le r < R\)

Trong đó k là hằng số, R là bán kính bình thường của khí quan, r là bán kính khu quản khi ho. Hỏi bán kính của khí quản khi ho bằng bao nhiêu thì tốc độ của không khí đi vào khí quản là lớn nhất ?

Phương pháp giải - Xem chi tiếtGiải bài tập 7 trang 20 SGK Toán 12 tập 1 - Cánh diều 1

B1: Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

B2: Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right),f\left( b \right)\)

B3: So sánh các giá trị tìm được ở bước 2 và kết luận

Lời giải chi tiết

Ta có: \(V' = 2kRr - 3k{r^2}\).

Nhận xét \(V' = 0 \Leftrightarrow \left[ \begin{array}{l}r = 0\\r = \frac{{2R}}{3}\end{array} \right.\).

Ta có \(f\left( 0 \right) = 0;f\left( {\frac{{2R}}{3}} \right) = \frac{{4k{R^3}}}{{27}}\)

Vậy bán kính của khí quản khi ho bẳng \(\frac{2}{3}\) bán kính khí quản lúc bình thường thì tốc độ không khí đi vào là lớn nhất.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 7 trang 20 SGK Toán 12 tập 1 - Cánh diều đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 7 trang 20 SGK Toán 12 tập 1 - Cánh diều: Tổng quan và Phương pháp giải

Bài tập 7 trang 20 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng trong chương trình học Toán 12, yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Nội dung bài tập 7 trang 20 SGK Toán 12 tập 1 - Cánh diều

Bài tập 7 thường xoay quanh việc tìm đạo hàm của hàm số, xét dấu đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số, tìm cực trị của hàm số và vẽ đồ thị hàm số. Cụ thể, bài tập có thể yêu cầu:

  • Tính đạo hàm của hàm số f(x) = ...
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Tìm cực đại, cực tiểu của hàm số.
  • Vẽ đồ thị hàm số.

Phương pháp giải bài tập 7 trang 20 SGK Toán 12 tập 1 - Cánh diều

  1. Bước 1: Tính đạo hàm f'(x): Sử dụng các quy tắc tính đạo hàm đã học để tính đạo hàm của hàm số f(x).
  2. Bước 2: Xét dấu đạo hàm f'(x): Tìm các điểm mà f'(x) = 0 hoặc f'(x) không xác định. Chia trục số thành các khoảng và xét dấu của f'(x) trên mỗi khoảng.
  3. Bước 3: Xác định khoảng đồng biến, nghịch biến: Nếu f'(x) > 0 trên một khoảng, hàm số đồng biến trên khoảng đó. Nếu f'(x) < 0 trên một khoảng, hàm số nghịch biến trên khoảng đó.
  4. Bước 4: Tìm cực trị: Nếu f'(x) đổi dấu từ dương sang âm tại một điểm x0, thì x0 là điểm cực đại của hàm số. Nếu f'(x) đổi dấu từ âm sang dương tại một điểm x0, thì x0 là điểm cực tiểu của hàm số.
  5. Bước 5: Vẽ đồ thị hàm số: Dựa vào các thông tin đã tìm được, vẽ đồ thị hàm số.

Ví dụ minh họa giải bài tập 7 trang 20 SGK Toán 12 tập 1 - Cánh diều

Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Hãy tìm khoảng đồng biến, nghịch biến và cực trị của hàm số.

Giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Xét dấu đạo hàm: y' = 0 ⇔ 3x2 - 6x = 0 ⇔ x(x - 2) = 0 ⇔ x = 0 hoặc x = 2
  3. Bảng xét dấu:
    x-∞02+∞
    y'+-+
    yĐồng biếnNghịch biếnĐồng biến
  4. Kết luận: Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Lưu ý khi giải bài tập 7 trang 20 SGK Toán 12 tập 1 - Cánh diều

  • Nắm vững các quy tắc tính đạo hàm.
  • Cẩn thận khi xét dấu đạo hàm, đặc biệt là các điểm mà đạo hàm bằng 0 hoặc không xác định.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo và hỗ trợ học tập

Ngoài SGK Toán 12 tập 1 - Cánh diều, các em có thể tham khảo thêm các tài liệu sau để nâng cao kiến thức và kỹ năng giải bài tập:

  • Sách bài tập Toán 12
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng trên YouTube

Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 12