Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 7 trang 27 SGK Toán 12 tập 2 theo chương trình Cánh diều, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, dễ hiểu và phù hợp với nhu cầu của học sinh, sinh viên.
a) Cho một vật chuyển động với vận tốc y = v(t) (m/s). Cho 0 < a < b và v(t) > 0 với mọi (t in [a;b]). Hãy giải thích vì sao (intlimits_a^b {v(t)dt} ) biểu thị quãng đường mà vật đi được trong khoảng thời gian từ a đến b (a,b tính theo giây) b) Áp dụng công thức ở câu a) để giải bài toán sau: một vật chuyển động với vận tốc v(t) = 2 – sint (m/s). Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm t = 0 (s) đến thời điểm (t = frac{{3pi }}{4}) (s)
Đề bài
a) Cho một vật chuyển động với vận tốc y = v(t) (m/s). Cho 0 < a < b và v(t) > 0 với mọi \(t \in [a;b]\). Hãy giải thích vì sao \(\int\limits_a^b {v(t)dt} \) biểu thị quãng đường mà vật đi được trong khoảng thời gian từ a đến b (a,b tính theo giây)
b) Áp dụng công thức ở câu a) để giải bài toán sau: một vật chuyển động với vận tốc v(t) = 2 – sint (m/s). Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm t = 0 (s) đến thời điểm \(t = \frac{{3\pi }}{4}\) (s)
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức đạo hàm của quãng đường là vận tốc.
b) Sử dụng định nghĩa tích phân để tính toán.
Lời giải chi tiết
a) Vì vận tốc là đạo hàm của quãng đường nên \(\int\limits_a^b {v(t)dt} = \left. {s(t)} \right|_a^b\).
Do đó \(\int\limits_a^b {v(t)dt} \) biểu thị quãng đường mà vật đi được trong khoảng thời gian từ a đến b.
b) Quãng đường vật di chuyển trong khoảng thời gian đó là:\(s(t) = \int\limits_0^{\frac{{3\pi }}{4}} {v\left( t \right)} dt = \int\limits_0^{\frac{{3\pi }}{4}} {\left( {2--sint} \right)} dt = \left. {\left( {2x + \cos x} \right)} \right|_0^{\frac{{3\pi }}{4}} = \frac{{3\pi }}{2} - \frac{{2 + \sqrt 2 }}{2} \approx 3\) (m).
Bài tập 7 trang 27 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và các ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để giải quyết thành công bài tập này.
Bài tập 7 thường bao gồm các dạng bài sau:
Để giải quyết bài tập 7 trang 27 SGK Toán 12 tập 2 - Cánh diều một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:
Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = 3x2 + 4x - 5
Ngoài SGK Toán 12 tập 2 - Cánh diều, bạn có thể tham khảo thêm các tài liệu sau:
Bài tập 7 trang 27 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!