Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 9 trang 43 SGK Toán 12 tập 2 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Trong bài này, ta xét một tình huống giả định có một học sinh sau kì nghỉ đã mang virus cúm quay trở lại khuôn viên trường học biệt lập với 1000 học sinh. Sau khi có sự tiếp xúc giữa các học sinh, virus cúm lây lan trong khuôn viên trường. Giả thiết hệ thống chống dịch chưa được khởi động và virus cúm được lây lan tự nhiên. Gọi P(t) là số học sinh bị nhiễm virus cúm ở ngày thứ t tính từ ngày học sinh mang virus cúm quay trở lại khuôn viên trường. Biết rằng tốc độ lây lan của virus cúm tỉ lệ thuậ
Đề bài
Trong bài này, ta xét một tình huống giả định có một học sinh sau kỳ nghỉ đã mang virus cúm quay trở lại khuôn viên trường học biệt lập. Sau khi có sự tiếp xúc giữa các học sinh, virus cúm lây lan trong khuôn viên trường. Giả thiết hệ thống chống dịch chưa được khởi động và virus cúm được lây lan tự nhiên. Gọi P(t) là số học sinh bị nhiễm virus cúm ở ngày thứ t tính từ ngày học sinh mang virus cúm quay trở lại khuôn viên trường. Biết rằng tốc độ lây lan của virus cúm cho bởi công thức \(P'(t) = - 0,02C{e^{ - 0,02t}}\), trong đó C là hằng số khác 0. Số học sinh bị nhiễm virus cúm sau 4 ngày là 55 học sinh. Xác định số học sinh bị nhiễm virus cúm sau 10 ngày.
Phương pháp giải - Xem chi tiết
Từ dữ kiện “tốc độ lây lan của virus cúm tỉ lệ thuận với số học sinh không bị nhiễm virus cúm theo hệ số tỉ lệ là hằng số” ta tìm được hệ số đó và phương trình biểu diễn P(t).
Lời giải chi tiết
Ta có:
\(P(t) = \int {P'(t)dt} = \int {( - 0,02C{e^{ - 0,02t}})dt} = - 0,02C\int {{e^{ - 0,02t}}dt} = - 0,02C\frac{{{e^{ - 0,02t}}}}{{ - 0,02}} + {C_1} = C{e^{ - 0,02t}} + {C_1}\).
Theo giả thiết:
\(\left\{ \begin{array}{l}P(0) = 1\\P(4) = 55\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}C{e^{ - 0,02.0}} + {C_1} = 1\\C{e^{ - 0,02.5}} + {C_1} = 55\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}C \approx - 702,36\\{C_1} \approx 703,36\end{array} \right.\).
Suy ra \(P(t) = - 702,36{e^{ - 0,02t}} + 703,36\).
Vậy số học sinh bị nhiễm virus cúm sau 10 ngày là:
\(P(10) = - 702,36{e^{ - 0,02.10}} + 703,36 \approx 128\) (học sinh).
Bài tập 9 trang 43 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập 9 yêu cầu học sinh xét hàm số f(x) = x3 - 3x2 + 2 và thực hiện các yêu cầu sau:
Để tính đạo hàm f'(x), ta sử dụng quy tắc đạo hàm của tổng và tích, cũng như quy tắc đạo hàm của lũy thừa:
f'(x) = d/dx (x3 - 3x2 + 2) = 3x2 - 6x
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Để xác định xem các điểm này là điểm cực đại hay cực tiểu, ta xét dấu của đạo hàm bậc hai f''(x):
f''(x) = d/dx (3x2 - 6x) = 6x - 6
Tại x = 0, f''(0) = -6 < 0, vậy x = 0 là điểm cực đại.
Tại x = 2, f''(2) = 6 > 0, vậy x = 2 là điểm cực tiểu.
Giá trị của hàm số tại các điểm cực trị là:
Vậy, hàm số có điểm cực đại là (0, 2) và điểm cực tiểu là (2, -2).
Ta xét dấu của đạo hàm f'(x) trên các khoảng xác định:
Thông qua việc giải bài tập 9 trang 43 SGK Toán 12 tập 2 - Cánh diều, chúng ta đã củng cố kiến thức về đạo hàm, các điểm cực trị và khoảng đồng biến, nghịch biến của hàm số. Việc nắm vững những kiến thức này là rất quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình Toán 12.
Để hiểu sâu hơn về đạo hàm và các ứng dụng của nó, bạn có thể tham khảo thêm các tài liệu sau:
Khi giải các bài toán về đạo hàm, bạn cần chú ý đến các quy tắc tính đạo hàm, các điều kiện để hàm số có cực trị và các phương pháp xác định khoảng đồng biến, nghịch biến của hàm số. Việc luyện tập thường xuyên sẽ giúp bạn nắm vững kiến thức và giải quyết các bài toán một cách nhanh chóng và chính xác.