Logo Header
  1. Môn Toán
  2. Giải bài tập 6 trang 73 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 6 trang 73 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 6 trang 73 SGK Toán 12 tập 1 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 1 - Cánh diều. Bài viết này sẽ hướng dẫn bạn giải bài tập 6 trang 73 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Trong không gian với hệ tọa độ \(Oxyz\), cho \(A\left( {3; - 2; - 1} \right)\). Gọi \({A_1},{A_2},{A_3}\) lần lượt là hình chiếu của điểm \(A\) trên các mặt phẳng tọa độ \(\left( {Oxy} \right),\left( {Oyz} \right),\left( {Ozx} \right)\). Tìm tọa độ của các điểm \({A_1},{A_2},{A_3}\).

Đề bài

Trong không gian với hệ tọa độ \(Oxyz\), cho \(A\left( {3; - 2; - 1} \right)\). Gọi \({A_1},{A_2},{A_3}\) lần lượt là hình chiếu của điểm \(A\) trên các mặt phẳng tọa độ \(\left( {Oxy} \right),\left( {Oyz} \right),\left( {Ozx} \right)\). Tìm tọa độ của các điểm \({A_1},{A_2},{A_3}\).

Phương pháp giải - Xem chi tiếtGiải bài tập 6 trang 73 SGK Toán 12 tập 1 - Cánh diều 1

Hình chiếu của một điểm lên mặt phẳng tọa độ sẽ giữ nguyên hai tọa độ tương ứng với mặt phẳng đó và tọa độ còn lại sẽ bằng 0

Lời giải chi tiết

Tọa độ của các điểm \({A_1},{A_2},{A_3}\) sẽ là:

\({A_1}\) (hình chiếu của \(A\) trên mặt phẳng \(\left( {Oxy} \right)\)): \({A_1}\left( {3; - 2;0} \right)\)

\({A_2}\) (hình chiếu của \(A\) trên mặt phẳng \(\left( {Oyz} \right)\)): \({A_2}\left( {0; - 2; - 1} \right)\)

\({A_3}\) (hình chiếu của \(A\) trên mặt phẳng \(\left( {Ozx} \right)\)): \({A_3}\left( {3;0; - 1} \right)\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 6 trang 73 SGK Toán 12 tập 1 - Cánh diều đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 6 trang 73 SGK Toán 12 tập 1 - Cánh diều: Tổng quan

Bài tập 6 trang 73 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là rất quan trọng để hoàn thành tốt bài tập này.

Nội dung bài tập 6 trang 73 SGK Toán 12 tập 1 - Cánh diều

Bài tập 6 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số khác. Để giải quyết bài tập này, học sinh cần:

  • Xác định đúng dạng của hàm số.
  • Áp dụng các quy tắc tính giới hạn phù hợp.
  • Kiểm tra điều kiện tồn tại giới hạn.

Lời giải chi tiết bài tập 6 trang 73 SGK Toán 12 tập 1 - Cánh diều

Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 6:

Câu a)

Để tính giới hạn của hàm số tại một điểm, ta có thể sử dụng phương pháp thay trực tiếp giá trị của điểm đó vào hàm số. Nếu kết quả là một số thực, thì đó là giới hạn của hàm số tại điểm đó. Nếu kết quả là một biểu thức không xác định (ví dụ: 0/0), thì ta cần sử dụng các phương pháp khác để tính giới hạn, chẳng hạn như phân tích thành nhân tử, sử dụng quy tắc L'Hopital, hoặc sử dụng định nghĩa giới hạn.

Câu b)

Trong trường hợp hàm số có dạng phân số, ta cần kiểm tra xem mẫu số có bằng 0 tại điểm cần tính giới hạn hay không. Nếu mẫu số bằng 0, thì ta cần phân tích tử số và mẫu số thành nhân tử để rút gọn phân số trước khi tính giới hạn.

Câu c)

Đối với các hàm số phức tạp hơn, ta có thể sử dụng các tính chất của giới hạn để đơn giản hóa biểu thức trước khi tính giới hạn. Ví dụ, ta có thể sử dụng tính chất giới hạn của tổng, hiệu, tích, thương, hoặc giới hạn của hàm hợp.

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài tập 6, còn rất nhiều bài tập tương tự về giới hạn hàm số trong SGK Toán 12 tập 1 - Cánh diều. Để giải quyết các bài tập này, học sinh cần nắm vững các kiến thức và kỹ năng sau:

  • Khái niệm giới hạn của hàm số.
  • Các quy tắc tính giới hạn.
  • Các dạng giới hạn đặc biệt (ví dụ: giới hạn của hàm đa thức, hàm hữu tỉ, hàm lượng giác).
  • Phương pháp sử dụng quy tắc L'Hopital.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải toán, học sinh nên luyện tập thêm các bài tập khác trong SGK và các tài liệu tham khảo. Ngoài ra, học sinh cũng có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học luyện thi để được hướng dẫn và giải đáp thắc mắc.

Kết luận

Bài tập 6 trang 73 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh hiểu rõ hơn về khái niệm giới hạn của hàm số và các phương pháp tính giới hạn. Hy vọng rằng với lời giải chi tiết và các hướng dẫn trong bài viết này, các bạn học sinh sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả.

Dạng bài tậpPhương pháp giải
Giới hạn của hàm đa thứcThay trực tiếp giá trị của biến vào hàm số
Giới hạn của hàm hữu tỉRút gọn phân số trước khi tính giới hạn
Giới hạn của hàm lượng giácSử dụng các công thức lượng giác và giới hạn đặc biệt

Tài liệu, đề thi và đáp án Toán 12