Logo Header
  1. Môn Toán
  2. Giải bài tập 2 trang 92 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 2 trang 92 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 2 trang 92 SGK Toán 12 tập 1 - Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2 trang 92 SGK Toán 12 tập 1 - Cánh diều. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập Toán 12.

Bài tập 2 trang 92 thuộc chương trình học Toán 12 tập 1, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm.

Bảng 19, Bảng 20 lần lượt biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của hai công ty A, B (đơn vị: triệu đồng) a) Tính phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm lần lượt biểu diễn mức lương của hai công ty A,B b) Công ty nào có mức lương đồng đều hơn?

Đề bài

Bảng 19, Bảng 20 lần lượt biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của hai công ty A, B (đơn vị: triệu đồng)

Giải bài tập 2 trang 92 SGK Toán 12 tập 1 - Cánh diều 1

a) Tính phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm lần lượt biểu diễn mức lương của hai công ty A,B

b) Công ty nào có mức lương đồng đều hơn?

Phương pháp giải - Xem chi tiếtGiải bài tập 2 trang 92 SGK Toán 12 tập 1 - Cánh diều 2

a) \({s^2} = \frac{{{n_1}.{{({x_1} - \overline x )}^2} + {n_2}{{({x_2} - \overline x )}^2} + ... + {n_p}{{({x_p} - \overline x )}^2}}}{n}\)

\(s = \sqrt {{s^2}} \)

b) Công ty nào có độ lệch chuẩn nhỏ hơn thì có mức lương đồng đều hơn

Lời giải chi tiết

Số trung bình cộng của mẫu số liệu ghép nhóm của công ty A là: \(\overline {{x_A}} = \frac{{15.12,5 + 18.17,5 + 10.22,5 + 10.27,5 + 5.32,5 + 2.37,5}}{{60}} = \frac{{62}}{3}\)

Phương sai của mẫu số liệu ghép nhóm của công ty A là:

\({s_A}^2 = \frac{{15.{{(12,5 - \frac{{62}}{3})}^2} + 18.{{(17,5 - \frac{{62}}{3})}^2} + 10.{{(22,5 - \frac{{62}}{3})}^2} + 10.{{(27,5 - \frac{{62}}{3})}^2} + 5.{{(32,5 - \frac{{62}}{3})}^2} + 2.{{(37,5 - \frac{{62}}{3})}^2}}}{{60}} \approx 49,14\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm của công ty A là: \({s_A} = \sqrt {{s_A}^2} = \sqrt {49,13} \approx 7\)

Số trung bình cộng của mẫu số liệu ghép nhóm của công ty B là: \(\overline {{x_B}} = \frac{{25.12,5 + 15.17,5 + 7.22,5 + 5.27,5 + 5.32,5 + 3.37,5}}{{60}} = \frac{{229}}{{12}}\)

Phương sai của mẫu số liệu ghép nhóm của công ty B là:

\(\begin{array}{l}{s_B}^2 = \frac{{25.{{(12,5 - \frac{{229}}{{12}})}^2} + 15.{{(17,5 - \frac{{229}}{{12}})}^2} + 7.{{(22,5 - \frac{{229}}{{12}})}^2} + 5.{{(27,5 - \frac{{229}}{{12}})}^2} + 5.{{(32,5 - \frac{{229}}{{12}})}^2} + 3.{{(37,5 - \frac{{229}}{{12}})}^2}}}{{60}}\\ \approx 57,91\end{array}\)Độ lệch chuẩn của mẫu số liệu ghép nhóm của công ty B là: \({s_B} = \sqrt {{s_B}^2} = \sqrt {57,91} \approx 7,61\)

Nhận thấy độ lệch chuẩn của công ty A nhỏ hơn công ty B nên mức lương của công ty A đồng đều hơn

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 2 trang 92 SGK Toán 12 tập 1 - Cánh diều đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 2 trang 92 SGK Toán 12 tập 1 - Cánh diều: Tổng quan và Phương pháp giải

Bài tập 2 trang 92 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng trong chương trình học, yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 2 trang 92 SGK Toán 12 tập 1 - Cánh diều

Bài tập 2 thường bao gồm các dạng bài sau:

  • Dạng 1: Tính đạo hàm của hàm số.
  • Dạng 2: Tìm cực trị của hàm số.
  • Dạng 3: Khảo sát sự biến thiên của hàm số.
  • Dạng 4: Ứng dụng đạo hàm để giải các bài toán tối ưu.

Lời giải chi tiết bài tập 2 trang 92 SGK Toán 12 tập 1 - Cánh diều

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập 2 trang 92, chúng tôi xin trình bày lời giải chi tiết cho từng dạng bài:

Dạng 1: Tính đạo hàm của hàm số

Để tính đạo hàm của hàm số, học sinh cần áp dụng các quy tắc tính đạo hàm đã học, bao gồm:

  • Quy tắc đạo hàm của tổng, hiệu, tích, thương của các hàm số.
  • Quy tắc đạo hàm của hàm hợp.
  • Đạo hàm của các hàm số cơ bản (hàm số mũ, hàm số logarit, hàm số lượng giác).

Ví dụ: Cho hàm số y = x2 + 2x + 1. Tính đạo hàm của hàm số.

Lời giải: y' = 2x + 2

Dạng 2: Tìm cực trị của hàm số

Để tìm cực trị của hàm số, học sinh cần thực hiện các bước sau:

  1. Tính đạo hàm bậc nhất y' của hàm số.
  2. Tìm các điểm mà y' = 0 hoặc y' không xác định.
  3. Khảo sát dấu của y' trên các khoảng xác định của hàm số để xác định các điểm cực trị.
  4. Tính giá trị của hàm số tại các điểm cực trị.

Ví dụ: Tìm cực trị của hàm số y = x3 - 3x2 + 2.

Lời giải:

  • y' = 3x2 - 6x
  • 3x2 - 6x = 0 => x = 0 hoặc x = 2
  • Khảo sát dấu của y' trên các khoảng (-∞, 0), (0, 2), (2, +∞)
  • Kết luận: Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Dạng 3: Khảo sát sự biến thiên của hàm số

Để khảo sát sự biến thiên của hàm số, học sinh cần thực hiện các bước sau:

  1. Xác định tập xác định của hàm số.
  2. Tính đạo hàm bậc nhất y' của hàm số.
  3. Tìm các điểm mà y' = 0 hoặc y' không xác định.
  4. Khảo sát dấu của y' trên các khoảng xác định của hàm số để xác định các khoảng đơn điệu của hàm số.
  5. Tính giới hạn của hàm số khi x tiến tới vô cùng và các điểm gián đoạn.
  6. Vẽ đồ thị của hàm số.

Dạng 4: Ứng dụng đạo hàm để giải các bài toán tối ưu

Để giải các bài toán tối ưu bằng đạo hàm, học sinh cần thực hiện các bước sau:

  1. Xây dựng hàm số biểu diễn đại lượng cần tối ưu.
  2. Tìm tập xác định của hàm số.
  3. Tính đạo hàm bậc nhất y' của hàm số.
  4. Tìm các điểm mà y' = 0 hoặc y' không xác định.
  5. Khảo sát dấu của y' trên các khoảng xác định của hàm số để xác định các điểm cực trị.
  6. So sánh giá trị của hàm số tại các điểm cực trị và các điểm biên của tập xác định để tìm giá trị lớn nhất hoặc nhỏ nhất của hàm số.

Lưu ý khi giải bài tập 2 trang 92 SGK Toán 12 tập 1 - Cánh diều

Để đạt kết quả tốt nhất khi giải bài tập 2 trang 92, học sinh cần lưu ý:

  • Nắm vững các khái niệm cơ bản về đạo hàm.
  • Thực hành giải nhiều bài tập khác nhau để làm quen với các dạng bài và phương pháp giải.
  • Kiểm tra lại kết quả sau khi giải bài tập.
  • Sử dụng các công cụ hỗ trợ giải toán (nếu cần thiết).

Hy vọng với lời giải chi tiết và các lưu ý trên, các em học sinh sẽ tự tin giải bài tập 2 trang 92 SGK Toán 12 tập 1 - Cánh diều một cách hiệu quả. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 12