Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 9 trang 88 SGK Toán 12 tập 2 theo chương trình Cánh diều.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.
Tính góc giữa hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\), biết: \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + {t_1}\\y = 2 - \sqrt 2 {t_1}\\z = 3 + {t_1}\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 3 + {t_2}\\y = 1 + {t_2}\\z = 5 - \sqrt 2 {t_2}\end{array} \right.\) ( là tham số) (làm tròn kết quả đến hàng đơn vị của độ).
Đề bài
Tính góc giữa hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\), biết: \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + {t_1}\\y = 2 - \sqrt 2 {t_1}\\z = 3 + {t_1}\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 3 + {t_2}\\y = 1 + {t_2}\\z = 5 - \sqrt 2 {t_2}\end{array} \right.\) ( là tham số) (làm tròn kết quả đến hàng đơn vị của độ).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về côsin góc giữa hai đường thẳng để tính: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) có vectơ chỉ phương lần lượt là \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right)\), \(\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó, ta có: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\).
Lời giải chi tiết
Đường thẳng \({\Delta _1}\) có một vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {1; - \sqrt 2 ;1} \right)\).
Đường thẳng \({\Delta _2}\) có một vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {1;1; - \sqrt 2 } \right)\).
Ta có: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {1.1 - \sqrt 2 .1 - \sqrt 2 .1} \right|}}{{\sqrt {{1^2} + {{\left( { - \sqrt 2 } \right)}^2} + {1^2}} .\sqrt {{1^2} + {1^2} + {{\left( { - \sqrt 2 } \right)}^2}} }} = \frac{{2\sqrt 2 - 1}}{4}\) nên \(\left( {{\Delta _1},{\Delta _2}} \right) \approx {63^o}\).
Bài tập 9 trang 88 SGK Toán 12 tập 2 thuộc chương trình Cánh diều, tập trung vào việc vận dụng kiến thức về đạo hàm để khảo sát hàm số. Cụ thể, bài tập yêu cầu học sinh xác định các khoảng đơn điệu của hàm số, tìm cực trị và vẽ đồ thị hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức liên quan đến đạo hàm, bao gồm đạo hàm của hàm số, điều kiện cần và đủ để hàm số đơn điệu, cực trị của hàm số và cách vẽ đồ thị hàm số.
Để giải bài tập 9, chúng ta sẽ thực hiện các bước sau:
Giả sử hàm số cần khảo sát là f(x) = x3 - 3x2 + 2. Chúng ta sẽ áp dụng các bước trên để giải bài tập:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | NB | Đ | CT |
(NB: Nghịch biến, Đ: Đồng biến, CT: Cực tiểu)
Để giải nhanh các bài tập về khảo sát hàm số, bạn nên:
Khi giải bài tập về khảo sát hàm số, bạn cần đảm bảo tính chính xác và cẩn thận trong các bước tính toán. Đặc biệt, cần chú ý đến tập xác định của hàm số và các điểm không xác định. Ngoài ra, việc vẽ đồ thị hàm số cũng rất quan trọng để kiểm tra lại kết quả và hiểu rõ hơn về tính chất của hàm số.
Bài tập 9 trang 88 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Hy vọng rằng với lời giải chi tiết và các mẹo giải nhanh được cung cấp trong bài viết này, bạn sẽ tự tin hơn khi giải các bài tập tương tự.