Logo Header
  1. Môn Toán
  2. Giải bài tập 2 trang 7 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 2 trang 7 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 2 trang 7 SGK Toán 12 tập 2 - Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2 trang 7 SGK Toán 12 tập 2 - Cánh diều. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải bài tập hiệu quả, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Bài tập 2 trang 7 thuộc chương trình học Toán 12 tập 2, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế.

Tìm nguyên hàm của các hàm số sau: a) (f(x) = 3{x^2} + x) b) (f(x) = 9{x^2} - 2x + 7) c) (f(x) = int {(4x - 3)({x^2}} + 3)dx)

Đề bài

Tìm nguyên hàm của các hàm số sau:

a) \(f(x) = 3{x^2} + x\)

b) \(f(x) = 9{x^2} - 2x + 7\)

c) \(f(x) = \int {(4x - 3)({x^2}} + 3)dx\)

Phương pháp giải - Xem chi tiếtGiải bài tập 2 trang 7 SGK Toán 12 tập 2 - Cánh diều 1

\(\int {f(x)dx = F(x) + C} \).

Lời giải chi tiết

a) \(\int {f(x)} dx = \int {(3{x^2} + x} )dx = {x^3} + \frac{{{x^2}}}{2} + C\)

b) \(\int {f(x)} dx = \int {(9{x^2} - 2x + 7} )dx = 3{x^3} - {x^2} + 7x + C\)

c)\(\int {f(x)} dx = \int {(4x - 3)({x^2} + 3)dx} \)

\(= \int {(4{x^3} - 3{x^2} + 12x - 9} ) dx\)

\(= {x^4} - {x^3} + 6{x^2} - 9x + C\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 2 trang 7 SGK Toán 12 tập 2 - Cánh diều đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán math. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 2 trang 7 SGK Toán 12 tập 2 - Cánh diều: Tổng quan và Phương pháp giải

Bài tập 2 trang 7 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 2 trang 7 SGK Toán 12 tập 2 - Cánh diều

Bài tập 2 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu học sinh tính đạo hàm của các hàm số đơn thức, đa thức, hàm hợp và hàm ẩn.
  • Tìm cực trị của hàm số: Yêu cầu học sinh tìm các điểm cực trị (cực đại, cực tiểu) của hàm số bằng cách giải phương trình đạo hàm bằng 0 và xét dấu đạo hàm.
  • Khảo sát sự biến thiên của hàm số: Yêu cầu học sinh xác định khoảng đồng biến, nghịch biến của hàm số dựa vào dấu của đạo hàm.
  • Ứng dụng đạo hàm để giải các bài toán thực tế: Yêu cầu học sinh sử dụng đạo hàm để giải các bài toán tối ưu hóa, tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trong một khoảng cho trước.

Lời giải chi tiết bài tập 2 trang 7 SGK Toán 12 tập 2 - Cánh diều

Để giúp học sinh hiểu rõ hơn về cách giải bài tập 2 trang 7, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:

Câu a: Tính đạo hàm của hàm số f(x) = x^3 - 3x^2 + 2x - 1

Lời giải:

f'(x) = 3x^2 - 6x + 2

Câu b: Tìm cực trị của hàm số g(x) = x^4 - 4x^2 + 3

Lời giải:

g'(x) = 4x^3 - 8x = 4x(x^2 - 2)

Giải phương trình g'(x) = 0, ta được x = 0, x = √2, x = -√2

Xét dấu g'(x), ta thấy:

  • x < -√2: g'(x) < 0 (hàm số nghịch biến)
  • -√2 < x < 0: g'(x) > 0 (hàm số đồng biến)
  • 0 < x < √2: g'(x) < 0 (hàm số nghịch biến)
  • x > √2: g'(x) > 0 (hàm số đồng biến)

Vậy hàm số g(x) đạt cực đại tại x = -√2 và x = √2, đạt cực tiểu tại x = 0.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, học sinh nên:

  • Nắm vững các công thức tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán để kiểm tra kết quả.
  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Phân tích bài toán và lựa chọn phương pháp giải phù hợp.

Tài liệu tham khảo hữu ích

Ngoài SGK Toán 12 tập 2 - Cánh diều, học sinh có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 12
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng về đạo hàm trên YouTube

Kết luận

Bài tập 2 trang 7 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã trình bày, các em học sinh sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 12