Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Cánh diều. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 8 trang 44, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu, logic, kèm theo các ví dụ minh họa cụ thể để bạn có thể áp dụng vào các bài tập tương tự.
Xét phản ứng hoá học tạo ra chất C từ hai chất A và B: \(A{\rm{ }} + {\rm{ }}B{\rm{ }} \to {\rm{ }}C\) Giả sử nồng độ của hai chất A và B bằng nhau [A] = [B] = a (mol/l). Khi đó, nồng độ của chất C theo thời gian t (t > 0) được cho bởi công thức: \(\left[ C \right]\; = \;\frac{{{a^2}Kt}}{{aKt + 1}}\) (mol/l), trong đó K là hằng số dương. a) Tìm tốc độ phản ứng ở thời điểm t > 0. b) Chứng minh nếu \(x\; = \;\left[ C \right]\) thì c) Nêu hiện tượng xảy ra với nồng độ các chất khi \(t\; \to \
Đề bài
Xét phản ứng hoá học tạo ra chất C từ hai chất A và B:
\(A{\rm{ }} + {\rm{ }}B{\rm{ }} \to {\rm{ }}C\)
Giả sử nồng độ của hai chất A và B bằng nhau [A] = [B] = a (mol/l). Khi đó, nồng độ của chất C theo thời gian t (t > 0) được cho bởi công thức: \(\left[ C \right]\; = \;\frac{{{a^2}Kt}}{{aKt + 1}}\) (mol/l), trong đó K là hằng số dương.
a) Tìm tốc độ phản ứng ở thời điểm t > 0.
b) Chứng minh nếu \(x\; = \;\left[ C \right]\) thì
c) Nêu hiện tượng xảy ra với nồng độ các chất khi \(t\; \to \; + \infty \)
d) Nêu hiện tượng xảy ra với tốc độ phản ứng khi \(t\; \to \; + \infty \)
Phương pháp giải - Xem chi tiết
Lời giải chi tiết
a) Tốc độ phản ứng được xác định bằng đạo hàm của nồng độ chất C theo thời gian t. Vì vậy, ta cần tính đạo hàm của hàm số [C] \( = \frac{{{a^2}Kt}}{{aKt + 1}}\) theo thời gian t.
Đặt \(f\left( t \right)\; = {a^2}Kt\) và \(g\left( t \right)\; = aKt + 1\). Khi đó, [C] \( = \frac{{f\left( t \right)}}{{g\left( t \right)}}.\)
Ta có:
Đạo hàm của \(f\left( t \right)\) theo t: $f\left( t \right)~={{a}^{2}}K$.
Đạo hàm của \(g\left( t \right)\) theo t:$g\left( t \right)~=aK$
Ta có:
Vậy, tốc độ phản ứng ở thời điểm t > 0 là: (Mol/(l.s))
b) Để chứng minh điều này, ta cần chứng minh rằng đạo hàm của \(x\; = \;\left[ C \right]\) theo thời gian t, x’(t), bằng với
Ta đã tính được từ phần trước.
Giả sử . Thay \(x{\rm{\;}} = {\rm{\;}}\left[ C \right] = \frac{{{{\rm{a}}^2}{\rm{Kt}}}}{{{\rm{aKt}} + 1}}\) vào phương trình
ta có:
$x\left( t \right)=~K{{\left( \frac{a-\left( {{a}^{2}}Kt \right)}{aKt+1} \right)}^{2}}=~K{{\left( a\left( \frac{1-aKt}{aKt+1} \right) \right)}^{2}}=~K{{\left( a\left( \frac{1-t}{t+\frac{1}{a}} \right) \right)}^{2}}=~K{{\left( a\left( \frac{1}{t+\frac{1}{a}} \right) \right)}^{2}}=~K{{\left( \frac{a}{t+\frac{1}{a}} \right)}^{2}}=~K{{\left( \frac{a}{t+a} \right)}^{2}}=~K{{\left( \frac{a\left( 1~-~t \right)}{\left( {{t}^{2}}+~2t~+~1 \right)} \right)}^{2}}$
So sánh với ta thấy hai biểu thức này chỉ bằng nhau khi \({\rm{K\;}} = \frac{1}{{\rm{a}}}\)
Vậy, nếu \({\rm{K\;}} = \frac{1}{{\rm{a}}}\;\)thì
c) Đối với chất A và B, do chúng liên tục phản ứng để tạo ra chất C, nên nồng độ của chúng sẽ giảm dần và khi \(t\; \to \; + \infty \), nồng độ của chúng sẽ tiến tới 0.
Đối với chất C, ta có \(\left[ C \right] = \frac{{{a^2}Kt}}{{aKt + 1}}\). Khi \(t\; \to \; + \infty \), ta có: \(\left[ C \right] = \frac{{{a^2}Kt}}{{aKt + 1}} = \frac{{{a^2}}}{{\left( {a\; + \frac{1}{t}} \right)}}\) → a (mol/l) Vậy, khi \(t\; \to \; + \infty \), nồng độ của chất C sẽ tiến tới a.
d) Tốc độ phản ứng được cho bởi công thức: .
Khi \(t\; \to \; + \infty \), ta có: .$x\left( t \right)=~\frac{a\left( 1~-~t \right)}{\left( {{t}^{2}}+~2t~+~1 \right)}~\to 0$.
Vậy, khi thời gian t tiến tới vô cùng, tốc độ phản ứng sẽ giảm dần và tiến tới 0. Điều này cho thấy phản ứng đã hoàn toàn xảy ra, và không còn chất nào tiếp tục phản ứng nữa.
Bài tập 8 trang 44 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong các kỳ thi.
Bài tập 8 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số khác. Để giải quyết bài tập này, học sinh cần:
Dưới đây là lời giải chi tiết cho từng câu hỏi của bài tập 8:
Để tính giới hạn của hàm số tại một điểm, ta có thể sử dụng phương pháp trực tiếp thay giá trị của điểm đó vào hàm số. Tuy nhiên, nếu việc thay trực tiếp dẫn đến dạng vô định, ta cần sử dụng các phương pháp khác như phân tích thành nhân tử, nhân liên hợp, hoặc áp dụng quy tắc L'Hopital.
Ví dụ, nếu hàm số là f(x) = (x^2 - 1) / (x - 1), ta không thể thay x = 1 trực tiếp vì sẽ dẫn đến dạng 0/0. Thay vào đó, ta phân tích thành nhân tử: f(x) = (x - 1)(x + 1) / (x - 1) = x + 1 (với x ≠ 1). Khi đó, giới hạn của f(x) khi x tiến tới 1 là 1 + 1 = 2.
Tương tự như câu a, ta cần xác định đúng dạng của hàm số và áp dụng các quy tắc tính giới hạn phù hợp. Nếu hàm số có chứa căn thức, ta có thể nhân liên hợp để khử căn thức và đơn giản hóa biểu thức.
Đối với các hàm số phức tạp hơn, ta có thể cần sử dụng quy tắc L'Hopital. Quy tắc này cho phép ta tính giới hạn của tỷ lệ hai hàm số bằng cách lấy đạo hàm của tử số và mẫu số, sau đó tính giới hạn của tỷ lệ hai đạo hàm.
Ngoài bài tập 8, còn rất nhiều bài tập tương tự về giới hạn hàm số. Để giải quyết các bài tập này, học sinh cần nắm vững các kiến thức sau:
Để củng cố kiến thức và kỹ năng giải bài tập về giới hạn hàm số, bạn có thể luyện tập thêm với các bài tập sau:
Bài tập 8 trang 44 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính giới hạn hàm số. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên sẽ giúp bạn tự tin hơn trong quá trình học tập và giải quyết các bài toán phức tạp hơn.
Dạng bài tập | Phương pháp giải |
---|---|
Hàm đa thức | Thay trực tiếp giá trị |
Hàm hữu tỉ | Phân tích thành nhân tử, nhân liên hợp, quy tắc L'Hopital |
Hàm chứa căn thức | Nhân liên hợp |