Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 5 trang 27 SGK Toán 12 tập 2 theo chương trình Cánh diều.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.
Cho (intlimits_0^4 {f(x)dx} = 4,intlimits_3^4 {f(x)dx} = 6). Tính (intlimits_0^3 {f(x)dx} )
Đề bài
Cho \(\int\limits_0^4 {f(x)dx} = 4,\int\limits_3^4 {f(x)dx} = 6\). Tính \(\int\limits_0^3 {f(x)dx} \).
Phương pháp giải - Xem chi tiết
\(\int\limits_a^b {f(x)} dx = \int\limits_a^c {f(x)} dx + \int\limits_c^b {f(x)} dx\).
Lời giải chi tiết
\(\int\limits_0^4 {f(x)dx} = \int\limits_0^3 {f(x)dx} + \int\limits_3^4 {f(x)dx} \Leftrightarrow 4 = \int\limits_0^3 {f(x)dx} + 6 \Leftrightarrow \int\limits_0^3 {f(x)dx} = - 2\).
Bài tập 5 trang 27 SGK Toán 12 tập 2 thuộc chương trình Cánh diều, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập 5 thường bao gồm các dạng bài sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập 5 trang 27, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi. Lưu ý rằng, đây chỉ là một trong nhiều cách giải, bạn có thể tìm tòi và khám phá các phương pháp khác để giải quyết bài toán.
Câu hỏi: Tìm đạo hàm của hàm số f(x) = x3 - 2x2 + 5x - 1.
Lời giải:
Áp dụng quy tắc tính đạo hàm của tổng và hiệu, ta có:
f'(x) = (x3)' - (2x2)' + (5x)' - (1)'
f'(x) = 3x2 - 4x + 5 - 0
f'(x) = 3x2 - 4x + 5
Để giải bài tập đạo hàm một cách hiệu quả, bạn nên:
Ngoài SGK Toán 12 tập 2 - Cánh diều, bạn có thể tham khảo thêm các tài liệu sau để nâng cao kiến thức về đạo hàm:
Bài tập 5 trang 27 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn khi giải quyết các bài toán tương tự.