Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 1 - Cánh diều. Bài viết này sẽ hướng dẫn bạn giải bài tập 8 trang 82 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Khoảng cách giữa hai điểm I(1;4;-7) và K(6;4;5) là: A. 169 B. 13 C. 26 D. 6,5
Đề bài
Khoảng cách giữa hai điểm I(1;4;-7) và K(6;4;5) là:
A. 169
B. 13
C. 26
D. 6,5
Phương pháp giải - Xem chi tiết
Khoảng cách giữa hai điểm là độ lớn vecto nối hai điểm đó
Lời giải chi tiết
\(\overrightarrow {IK} = (5;0;12) \Rightarrow IK = \sqrt {{5^2} + {{12}^2}} = 13\)
Chọn B
Bài tập 8 trang 82 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại vô cùng để giải quyết các bài toán cụ thể. Việc nắm vững các định nghĩa, tính chất và các phương pháp tính giới hạn là yếu tố then chốt để hoàn thành tốt bài tập này.
Bài tập 8 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của các hàm số khi x tiến tới một giá trị cụ thể hoặc khi x tiến tới vô cùng. Các hàm số có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số phức tạp hơn. Để giải quyết bài tập này, học sinh cần:
Dưới đây là lời giải chi tiết cho từng câu hỏi của bài tập 8:
Để giải câu a, ta cần tính giới hạn của hàm số khi x tiến tới một giá trị cụ thể. Ta có thể sử dụng phương pháp thay trực tiếp giá trị của x vào hàm số. Nếu kết quả là một số xác định, thì đó là giới hạn của hàm số. Nếu kết quả là dạng vô định, ta cần sử dụng các phương pháp khác để tính giới hạn.
Đối với câu b, ta cần tính giới hạn của hàm số khi x tiến tới vô cùng. Ta có thể sử dụng phương pháp chia cả tử và mẫu cho x. Khi đó, giới hạn của hàm số sẽ trở thành giới hạn của một tỷ số, có thể tính được dễ dàng hơn.
Câu c có thể yêu cầu học sinh sử dụng các công thức giới hạn đặc biệt, chẳng hạn như giới hạn của (sin x)/x khi x tiến tới 0. Việc nắm vững các công thức này sẽ giúp học sinh giải quyết bài tập một cách nhanh chóng và chính xác.
Ngoài các phương pháp đã đề cập ở trên, còn có một số phương pháp tính giới hạn khác thường được sử dụng, bao gồm:
Khi giải bài tập về giới hạn, học sinh cần lưu ý một số điểm sau:
Để củng cố kiến thức về giới hạn, bạn có thể thử giải các bài tập sau:
Bài tập 8 trang 82 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính giới hạn. Hy vọng rằng với lời giải chi tiết và các phương pháp hướng dẫn trong bài viết này, bạn sẽ tự tin hơn khi giải quyết các bài tập tương tự.