Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 12 tập 1 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho mục 2 trang 75, 76 sách giáo khoa Toán 12 tập 1 - Cánh diều.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, hiểu rõ phương pháp giải bài tập và tự tin hơn trong quá trình học tập môn Toán.
Tọa độ trung điểm đoạn thẳng. Tọa độ trọng tâm tam giác
Đề bài
Trả lời câu hỏi Hoạt động 2 trang 75 SGK Toán 12 Cánh diều
a) Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A({x_A};{y_A};{z_A})\) và \(B({x_B};{y_B};{z_B})\). Gọi \(M({x_M};{y_M};{z_M})\)là trung điểm đoạn thẳng AB
b) Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có trọng tâm G
Phương pháp giải - Xem chi tiết
Cho tam giác ABC có \(A({a_1};{a_2};{a_3})\), \(B({b_1};{b_2};{b_3})\), \(C({c_1};{c_2};{c_3})\), ta có \(M(\frac{{{a_1} + {b_1}}}{2};\frac{{{a_2} + {b_2}}}{2};\frac{{{a_3} + {b_3}}}{2})\) là trung điểm của AB, \(G(\frac{{{a_1} + {b_1} + {c_1}}}{3};\frac{{{a_2} + {b_2} + {c_2}}}{3};\frac{{{a_3} + {b_3} + {c_3}}}{3})\) là trọng tâm của tam giác ABC
Lời giải chi tiết
a) Ta có: \(\overrightarrow {OM} = ({x_M};{y_M};{z_M})\), \(\overrightarrow {OA} = ({x_A};{y_A};{z_A})\), \(\overrightarrow {OB} = ({x_B};{y_B};{z_B})\)
Nên \(\overrightarrow {OM} = (\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2})\)
Tọa độ của điểm M là: \(M(\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2})\)
b) Ta có: \(\overrightarrow {OG} = (\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3})\)
Tọa độ điểm G là: \(G(\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3})\)
Mục 2 trong SGK Toán 12 tập 1 - Cánh diều tập trung vào việc nghiên cứu về giới hạn của hàm số. Đây là một khái niệm nền tảng quan trọng trong giải tích, đóng vai trò then chốt trong việc hiểu các khái niệm phức tạp hơn như đạo hàm và tích phân. Việc nắm vững kiến thức về giới hạn hàm số không chỉ giúp học sinh giải quyết các bài tập trong sách giáo khoa mà còn là bước đệm quan trọng cho việc học tập các môn khoa học kỹ thuật khác.
Mục 2 bao gồm các nội dung chính sau:
a) lim (x→2) (x^2 - 4) / (x - 2)
Lời giải: Ta có thể phân tích tử số thành (x - 2)(x + 2). Khi đó:
lim (x→2) (x^2 - 4) / (x - 2) = lim (x→2) (x - 2)(x + 2) / (x - 2) = lim (x→2) (x + 2) = 4
b) lim (x→∞) (2x + 1) / (x - 3)
Lời giải: Chia cả tử và mẫu cho x, ta được:
lim (x→∞) (2x + 1) / (x - 3) = lim (x→∞) (2 + 1/x) / (1 - 3/x) = 2/1 = 2
Lời giải: Ta có thể phân tích tử số thành (x - 1)(x + 1). Khi đó:
lim (x→1) (x^2 - 1) / (x - 1) = lim (x→1) (x - 1)(x + 1) / (x - 1) = lim (x→1) (x + 1) = 2
Lời giải: Để chứng minh f(x) liên tục tại x = 1, ta cần chứng minh:
Ta có: f(1) = 1^3 - 3(1) + 2 = 0
lim (x→1) f(x) = lim (x→1) (x^3 - 3x + 2) = 1^3 - 3(1) + 2 = 0
Vì lim (x→1) f(x) = f(1) = 0, nên f(x) liên tục tại x = 1.
Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các em học sinh đã hiểu rõ hơn về Mục 2 trang 75,76 SGK Toán 12 tập 1 - Cánh diều. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!