Logo Header
  1. Môn Toán
  2. Giải bài tập 6 trang 95, 96 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 6 trang 95, 96 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 6 trang 95, 96 SGK Toán 12 tập 2 - Cánh diều

Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 12 tập 2 của giaitoan.edu.vn. Trong bài viết này, chúng ta sẽ cùng nhau đi sâu vào việc giải chi tiết bài tập 6 trang 95, 96 SGK Toán 12 tập 2 theo chương trình Cánh diều. Mục tiêu của chúng ta là nắm vững kiến thức, phương pháp giải và áp dụng vào các bài tập tương tự.

Giaitoan.edu.vn cam kết cung cấp lời giải chính xác, dễ hiểu, giúp các em tự tin hơn trong quá trình học tập và ôn luyện môn Toán.

Cho hai xúc xắc cân đối và đồng chất. Gieo lần lượt từng xúc xắc trong hai xúc xắc đó. Tính xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 6, biết rằng xúc xắc thứ nhất xuất hiện mặt 4 chấm.

Đề bài

Cho hai xúc xắc cân đối và đồng chất. Gieo lần lượt từng xúc xắc trong hai xúc xắc đó. Tính xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 6, biết rằng xúc xắc thứ nhất xuất hiện mặt 4 chấm.

Phương pháp giải - Xem chi tiếtGiải bài tập 6 trang 95, 96 SGK Toán 12 tập 2 - Cánh diều 1

Sử dụng kiến thức về định nghĩa xác suất có điều kiện để tính: Cho hai biến cố A và B. Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được gọi là xác suất của A với điều kiện B, kí hiệu là P(A|B). Nếu \(P\left( B \right) > 0\) thì \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).

Lời giải chi tiết

Gọi A là biến cố: “Tổng số chấm xuất hiện trên hai xúc xắc bằng 6”, B là biến cố: “Xúc xắc thứ nhất xuất hiện mặt 4 chấm”. Khi đó, \(A \cap B\) là biến cố: “Tổng số chấm xuất hiện trên hai xúc xắc bằng 6 và xúc xắc thứ nhất xuất hiện mặt 4 chấm”.

Các kết quả thuận lợi của biến cố B là: (4; 1), (4; 2), (4; 3), (4; 4), (4; 5), (4; 6) nên \(n\left( B \right) = 6\). Do đó, \(P\left( B \right) = \frac{6}{{6.6}} = \frac{1}{6}\).

Kết quả thuận lợi của biến cố \(A \cap B\) là: (4; 2) nên \(n\left( {A \cap B} \right) = 1.\) Do đó, \(P\left( {A \cap B} \right) = \frac{1}{{36}}\).

Khi đó: \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}\).

Vậy xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 6, biết rằng xúc xắc thứ nhất xuất hiện mặt 4 chấm là \(\frac{1}{6}\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 6 trang 95, 96 SGK Toán 12 tập 2 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 6 trang 95, 96 SGK Toán 12 tập 2 - Cánh diều: Tổng quan

Bài tập 6 trang 95, 96 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về đạo hàm của hàm số. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm, đặc biệt là quy tắc tính đạo hàm của hàm hợp và đạo hàm của hàm lượng giác. Việc nắm vững kiến thức này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình Toán 12.

Nội dung chi tiết bài tập 6

Bài tập 6 bao gồm một số câu hỏi yêu cầu học sinh tính đạo hàm của các hàm số khác nhau. Các hàm số này có thể chứa các phép toán cộng, trừ, nhân, chia, hàm hợp và hàm lượng giác. Để giải quyết bài tập này, học sinh cần:

  1. Xác định đúng các quy tắc đạo hàm cần sử dụng.
  2. Áp dụng quy tắc một cách chính xác.
  3. Rút gọn biểu thức đạo hàm để có kết quả cuối cùng.

Lời giải chi tiết từng câu

Câu a: Tính đạo hàm của hàm số y = sin(2x + 1)

Để tính đạo hàm của hàm số y = sin(2x + 1), ta sử dụng quy tắc đạo hàm của hàm hợp: (u(v(x)))' = u'(v(x)) * v'(x). Trong trường hợp này, u(t) = sin(t) và v(x) = 2x + 1.

Ta có: u'(t) = cos(t) và v'(x) = 2. Do đó, y' = cos(2x + 1) * 2 = 2cos(2x + 1).

Câu b: Tính đạo hàm của hàm số y = cos(x^2)

Tương tự như câu a, ta sử dụng quy tắc đạo hàm của hàm hợp. Trong trường hợp này, u(t) = cos(t) và v(x) = x^2.

Ta có: u'(t) = -sin(t) và v'(x) = 2x. Do đó, y' = -sin(x^2) * 2x = -2xsin(x^2).

Câu c: Tính đạo hàm của hàm số y = tan(3x - 2)

Sử dụng quy tắc đạo hàm của hàm hợp và đạo hàm của hàm tan: (tan(x))' = 1/cos^2(x). Trong trường hợp này, u(t) = tan(t) và v(x) = 3x - 2.

Ta có: u'(t) = 1/cos^2(t) và v'(x) = 3. Do đó, y' = (1/cos^2(3x - 2)) * 3 = 3/cos^2(3x - 2).

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài tập 6, còn rất nhiều bài tập tương tự yêu cầu tính đạo hàm của các hàm số phức tạp hơn. Để giải quyết các bài tập này, học sinh cần:

  • Nắm vững các quy tắc đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán để kiểm tra kết quả.

Lưu ý quan trọng khi giải bài tập về đạo hàm

Khi giải bài tập về đạo hàm, học sinh cần chú ý:

  • Đọc kỹ đề bài để xác định đúng hàm số cần tính đạo hàm.
  • Sử dụng đúng quy tắc đạo hàm.
  • Rút gọn biểu thức đạo hàm một cách cẩn thận.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Kết luận

Bài tập 6 trang 95, 96 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng rằng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ tự tin hơn trong quá trình học tập và ôn luyện môn Toán. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 12