Logo Header
  1. Môn Toán
  2. Giải bài tập 1 trang 42 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 1 trang 42 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 1 trang 42 SGK Toán 12 tập 2 - Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 1 trang 42 SGK Toán 12 tập 2 - Cánh diều. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập toán học.

Bài tập 1 thuộc chương trình học Toán 12 tập 2, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm.

Cho hàm số (f(x) = 2x + {e^x}). Nguyên hàm F(x) của hàm số f(x) trên (mathbb{R}) sao cho F(0) = 2023 là: A. ({x^2} + {e^x} + 2023) B. ({x^2} + {e^x} + C) C. ({x^2} + {e^x} + 2022) D. ({x^2} + {e^x})

Đề bài

Cho hàm số \(f(x) = 2x + {e^x}\). Nguyên hàm F(x) của hàm số f(x) trên \(\mathbb{R}\) sao cho F(0) = 2023 là:

A. \({x^2} + {e^x} + 2023\)

B. \({x^2} + {e^x} + C\)

C. \({x^2} + {e^x} + 2022\)

D. \({x^2} + {e^x}\)

Phương pháp giải - Xem chi tiếtGiải bài tập 1 trang 42 SGK Toán 12 tập 2 - Cánh diều 1

Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi x thuộc K.

Lời giải chi tiết

\(F(x) = \int {f(x)} = \int {\left( {2x + {e^x}} \right)dx} = {x^2} + {e^x} + C\).

\(F(0) = 2023 \Leftrightarrow {0^2} + {e^0} + C = 2023 \Leftrightarrow 0 + 1 + C = 2023 \Leftrightarrow C = 2022\).

Chọn C

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 1 trang 42 SGK Toán 12 tập 2 - Cánh diều đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 1 trang 42 SGK Toán 12 tập 2 - Cánh diều: Tổng quan và Phương pháp giải

Bài tập 1 trang 42 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng trong chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm.

Nội dung bài tập 1 trang 42 SGK Toán 12 tập 2 - Cánh diều

Bài tập 1 bao gồm các câu hỏi liên quan đến việc tính đạo hàm của các hàm số đơn giản. Cụ thể, học sinh cần tính đạo hàm của các hàm số sau:

  • y = x3 - 3x2 + 2x - 5
  • y = (x2 + 1)(x - 2)
  • y = sin(2x)
  • y = ex + ln(x)

Phương pháp giải bài tập 1 trang 42 SGK Toán 12 tập 2 - Cánh diều

Để giải bài tập 1, học sinh có thể áp dụng các quy tắc tính đạo hàm sau:

  • Quy tắc đạo hàm của hàm số lũy thừa: (xn)' = nxn-1
  • Quy tắc đạo hàm của tổng và hiệu: (u ± v)' = u' ± v'
  • Quy tắc đạo hàm của tích: (uv)' = u'v + uv'
  • Quy tắc đạo hàm của hàm hợp: (f(g(x)))' = f'(g(x)) * g'(x)
  • Đạo hàm của sin(x): (sin(x))' = cos(x)
  • Đạo hàm của cos(x): (cos(x))' = -sin(x)
  • Đạo hàm của ex: (ex)' = ex
  • Đạo hàm của ln(x): (ln(x))' = 1/x

Lời giải chi tiết bài tập 1 trang 42 SGK Toán 12 tập 2 - Cánh diều

Câu a: y = x3 - 3x2 + 2x - 5

Áp dụng quy tắc đạo hàm của hàm số lũy thừa và quy tắc đạo hàm của tổng và hiệu, ta có:

y' = (x3)' - 3(x2)' + 2(x)' - (5)' = 3x2 - 6x + 2

Câu b: y = (x2 + 1)(x - 2)

Áp dụng quy tắc đạo hàm của tích, ta có:

y' = (x2 + 1)'(x - 2) + (x2 + 1)(x - 2)' = 2x(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1

Câu c: y = sin(2x)

Áp dụng quy tắc đạo hàm của hàm hợp, ta có:

y' = (sin(2x))' = cos(2x) * (2x)' = 2cos(2x)

Câu d: y = ex + ln(x)

Áp dụng quy tắc đạo hàm của hàm số mũ và hàm logarit, ta có:

y' = (ex)' + (ln(x))' = ex + 1/x

Lưu ý khi giải bài tập về đạo hàm

  • Nắm vững các khái niệm cơ bản về đạo hàm.
  • Thành thạo các quy tắc tính đạo hàm.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Kiểm tra lại kết quả sau khi giải bài tập.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tính vận tốc và gia tốc của một vật chuyển động.
  • Tìm cực trị của một hàm số.
  • Giải các bài toán tối ưu hóa.
  • Phân tích sự thay đổi của một đại lượng theo thời gian.

Kết luận

Bài tập 1 trang 42 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày ở trên, các em học sinh sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 12