Logo Header
  1. Môn Toán
  2. Giải bài tập 4 trang 87 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 4 trang 87 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 4 trang 87 SGK Toán 12 tập 2 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2 - Cánh diều. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 4 trang 87, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất.

Khoảng cách từ điểm M(a; b; c) đến mặt phẳng \(x - a - b - c = 0\) là: A. \(\left| {a + b} \right|\). B. \(\left| {b + c} \right|\). C. \(\left| {c + a} \right|\). D. \(\frac{{\left| {b + c} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\).

Đề bài

Khoảng cách từ điểm M(a; b; c) đến mặt phẳng \(x - a - b - c = 0\) là:

A. \(\left| {a + b} \right|\).

B. \(\left| {b + c} \right|\).

C. \(\left| {c + a} \right|\).

D. \(\frac{{\left| {b + c} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\).

Phương pháp giải - Xem chi tiếtGiải bài tập 4 trang 87 SGK Toán 12 tập 2 - Cánh diều 1

Sử dụng kiến thức về khoảng cách từ một điểm đến một mặt phẳng để tính: Khoảng cách từ điểm \({M_o}\left( {{x_o};{y_o};{z_o}} \right)\) đến mặt phẳng (P): \(Ax + By + Cz + D = 0\) (\({A^2} + {B^2} + {C^2} > 0\)) được tính theo công thức: \(d\left( {{M_o},\left( P \right)} \right) = \frac{{\left| {A{x_o} + B{y_o} + C{z_o} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).

Lời giải chi tiết

Ta có: \(d\left( {M,\left( P \right)} \right) = \frac{{\left| {a - a - b - c} \right|}}{{\sqrt {{1^2}} }} = \left| {b + c} \right|\).

Chọn B

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 4 trang 87 SGK Toán 12 tập 2 - Cánh diều đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 4 trang 87 SGK Toán 12 tập 2 - Cánh diều: Tổng quan

Bài tập 4 trang 87 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững lý thuyết và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong các kỳ thi.

Nội dung bài tập 4 trang 87 SGK Toán 12 tập 2 - Cánh diều

Bài tập 4 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc phức tạp.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số.
  • Ứng dụng đạo hàm để giải phương trình: Sử dụng đạo hàm để giải các phương trình liên quan đến hàm số.
  • Khảo sát hàm số: Sử dụng đạo hàm để khảo sát tính đơn điệu, cực trị của hàm số.

Lời giải chi tiết bài tập 4 trang 87 SGK Toán 12 tập 2 - Cánh diều

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi. Dưới đây là ví dụ về lời giải cho một câu hỏi thường gặp:

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1

Lời giải:

Sử dụng quy tắc tính đạo hàm của tổng, hiệu và lũy thừa, ta có:

f'(x) = 3x2 + 4x - 5

Các bước giải bài tập đạo hàm hiệu quả

  1. Nắm vững lý thuyết: Hiểu rõ các định nghĩa, quy tắc tính đạo hàm và các ứng dụng của đạo hàm.
  2. Phân tích bài toán: Xác định rõ yêu cầu của bài toán và các thông tin đã cho.
  3. Chọn phương pháp giải phù hợp: Lựa chọn phương pháp giải phù hợp với từng dạng bài.
  4. Thực hiện tính toán chính xác: Thực hiện các phép tính đạo hàm một cách cẩn thận và chính xác.
  5. Kiểm tra lại kết quả: Kiểm tra lại kết quả để đảm bảo tính đúng đắn.

Mẹo giải bài tập đạo hàm nhanh chóng

  • Sử dụng bảng đạo hàm: Tham khảo bảng đạo hàm để nhanh chóng tìm ra đạo hàm của các hàm số cơ bản.
  • Áp dụng quy tắc tính đạo hàm: Nắm vững và áp dụng các quy tắc tính đạo hàm một cách linh hoạt.
  • Luyện tập thường xuyên: Luyện tập giải nhiều bài tập khác nhau để rèn luyện kỹ năng và kinh nghiệm.

Tài liệu tham khảo hữu ích

Ngoài SGK Toán 12 tập 2 - Cánh diều, bạn có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:

  • Sách bài tập Toán 12
  • Các trang web học toán online uy tín
  • Các video bài giảng về đạo hàm

Kết luận

Hy vọng rằng với lời giải chi tiết và các hướng dẫn trên, bạn đã có thể tự tin giải bài tập 4 trang 87 SGK Toán 12 tập 2 - Cánh diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 12