Logo Header
  1. Môn Toán
  2. Giải bài 1.10 trang 10 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.10 trang 10 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.10 trang 10 Sách bài tập Toán 12 - Kết nối tri thức

Bài 1.10 trang 10 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn của hàm số để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.10 trang 10 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Một vật chuyển động dọc theo một trục số nằm ngang, chiều dương từ trái sang phải. Giả sử vị trí của vật (x) (mét) từ thời điểm (t = 0) giây đến thời điểm (t = 5) giây được cho bởi công thức (xleft( t right)={{t}^{3}}-7{{t}^{2}}+11t+5). a) Xác định vận tốc (v) của vật. Xác định khoảng thời gian vật chuyển động sang phải và khoảng thời gian vật chuyển động sang trái. b) Tìm tốc độ của vật và thời điểm vật dừng lại. Tính tốc độ cực đại của vật trong khoảng thời gian từ (t = 1) đến

Đề bài

Một vật chuyển động dọc theo một trục số nằm ngang, chiều dương từ trái sang phải. Giả sử vị trí của vật \(x\) (mét) từ thời điểm \(t = 0\) giây đến thời điểm \(t = 5\) giây được cho bởi công thức \(x\left( t \right)={{t}^{3}}-7{{t}^{2}}+11t+5\).

a) Xác định vận tốc \(v\) của vật. Xác định khoảng thời gian vật chuyển động sang phải và khoảng thời gian vật chuyển động sang trái.

b) Tìm tốc độ của vật và thời điểm vật dừng lại. Tính tốc độ cực đại của vật trong khoảng thời gian từ \(t = 1\) đến \(t = 4\) giây.

c) Xác định gia tốc \(a\) của vật. Tìm khoảng thời gian vật tăng tốc và khoảng thời gian vật giảm tốc.

Phương pháp giải - Xem chi tiếtGiải bài 1.10 trang 10 sách bài tập toán 12 - Kết nối tri thức 1

Ý a: Vận tốc của vật là \(x'\left( t \right)\). Xác định hướng chuyển động của vật sau đó xét dấu vận tốc, cùng chiều dương thì vận tốc dương và ngược lại (chiều dương chuyển động là trái sang phải theo đề bài).

Ý b: Tốc độ của vật là \(\left| {v\left( t \right)} \right|\). Vật dừng lại khi tốc độ bằng \(0\), tìm t thỏa mãn điều kiện này. Tốc độ cực đại của vật từ \(t = 1\) giây đến \(t = 4\) giây là \(\mathop {\max }\limits_{t \in \left[ {1;4} \right]} \left| {v\left( t \right)} \right|\), tìm \(\mathop {\max }\limits_{t \in \left[ {1;4} \right]} \left| {v\left( t \right)} \right|\) bằng cách xét dấu \(\left| {v\left( t \right)} \right|\) trên \(\left[ {1;4} \right]\), vận dụng kiến thức về dấu của tam thức bậc hai và giá trị tuyệt đối.

Ý c: Tính gia tốc \(a = v'\left( t \right)\). Vật tăng tốc khi \(\) và giảm tốc khi \(a\left( t \right) < 0\). Với \(t \in \left[ {0;5} \right]\), xét dấu \(a\) để tìm được t theo yêu cầu. 

Lời giải chi tiết

Ta có \(x\left( t \right) = {t^3} - 7{t^2} + 11t + 5,t \in \left[ {0;5} \right]\).

a) Vận tốc của vật là \(v\left( t \right) = x'\left( t \right) = 3{t^2} - 14t + 11,t \in \left[ {0;5} \right]\) (m/s).

Ta có \(v\left( t \right) = 0 \Leftrightarrow 3{t^2} - 14t + 11 = 0 \Leftrightarrow t = 1\) hoặc \(t = \frac{{11}}{3}\).

Theo đề bài, vật chuyển động với chiều dương từ trái sang phải tức là vật chuyển động sang phải khi \(v\left( t \right) > 0\) và chuyển động sang trái khi \(v\left( t \right) < 0\).

Ta xét dấu của \(v\left( t \right)\) trên \(\left[ {0;5} \right]\):

Ta có \(v\left( t \right) > 0\) khi \(t \in \left( {0;1} \right)\) hoặc \(t \in \left( {\frac{{11}}{3};5} \right)\); \(v\left( t \right) < 0\) khi \(t \in \left( {1;\frac{{11}}{3}} \right)\).

Do đó vật chuyển động sang phải trong khoảng thời điểm từ \(0\) giây đến \(1\) giây và từ \(\frac{{11}}{3}\) giây đến \(5\) giây; vật chuyển động sang trái trong khoảng thời điểm từ \(1\) giây đến \(\frac{{11}}{3}\) giây.

b) Tốc độ của vật là \(\left| {v\left( t \right)} \right| = x'\left( t \right) = 3{t^2} - 14t + 11,t \in \left[ {0;5} \right].\)

Vật dừng lại khi tốc độ bằng \(0\). Ta có \(\left| {v\left( t \right)} \right| = 0 \Leftrightarrow 3{t^2} - 14t + 11 = 0 \Leftrightarrow t = 1\) hoặc \(t = \frac{{11}}{3}\).

Suy ra vật dừng lại tại thời điểm \(t = 1\) giây hoặc \(t = \frac{{11}}{3}\) giây.

Xét \(v\left( t \right) = 3{t^2} - 14t + 11,t \in \left[ {1;4} \right]\). Tốc độ cực đại của vật từ \(t = 1\) giây đến \(t = 4\) giây là \(\mathop {\max }\limits_{t \in \left[ {1;4} \right]} \left| {v\left( t \right)} \right|\).

Xét hàm số \(\left| {v\left( t \right)} \right| = \left| {3{t^2} - 14t + 11} \right|,t \in \left[ {1;4} \right]\)

Ở ý a ta đã xét dấu của \(v\left( t \right)\) trên \(\left[ {0;5} \right]\) nên ta thu được dấu \(v\left( t \right)\) trên \(\left[ {1;4} \right]\) như sau: \(v\left( t \right) > 0\) khi \(t \in \left( {\frac{{11}}{3};4} \right)\); \(v\left( t \right) < 0\) khi \(t \in \left( {1;\frac{{11}}{3}} \right)\).

Do đó ta có giá trị của hàm \(\left| {v\left( t \right)} \right|\) trên \(\left[ {1;4} \right]\) là

+ \(\left| {v\left( t \right)} \right| = v\left( t \right) = 3{t^2} - 14t + 11,t \in \left( {\frac{{11}}{3};4} \right)\)

+ \(\left| {v\left( t \right)} \right| = - v\left( t \right) = - 3{t^2} + 14t - 11,t \in \left( {1;\frac{{11}}{3}} \right)\)

Lập bảng xét dấu \(\left| {v\left( t \right)} \right|\) trên \(\left[ {1;4} \right]\) như sau

Giải bài 1.10 trang 10 sách bài tập toán 12 - Kết nối tri thức 2

Từ bảng trên ta có \(\mathop {\max }\limits_{t \in \left[ {1;4} \right]} \left| {v\left( t \right)} \right| = \frac{{16}}{3}\).

Vậy tốc độ cực đại của vật từ \(t = 1\) giây đến \(t = 4\) giây là \(\frac{{16}}{3}\) m/s.

c) Gia tốc của vật là \(a\left( t \right) = v'\left( t \right) = 6t - 14\). Khi đó \(a\left( t \right) = 0 \Leftrightarrow 6t - 14 = 0 \Leftrightarrow t = \frac{7}{3}\)

Vật tăng tốc khi \(\) và giảm tốc khi \(a\left( t \right) < 0\). Với \(t \in \left[ {0;5} \right]\) ta có:

\(a\left( t \right) > 0\) khi \(t \in \left[ {\frac{7}{3};5} \right]\) và \(a\left( t \right) < 0\) khi \(t \in \left[ {0;\frac{7}{3}} \right]\).

Vậy vật tăng tốc trong khoảng thời gian từ \(\frac{7}{3}\) giây đến \(5\) giây và giảm tốc trong khoảng thời gian từ \(0\) giây đến \(\frac{7}{3}\) giây.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1.10 trang 10 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng soạn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1.10 trang 10 Sách bài tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 1.10 trang 10 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về giới hạn của hàm số. Để giải bài tập này, học sinh cần nắm vững các khái niệm cơ bản về giới hạn, các tính chất của giới hạn và các phương pháp tính giới hạn.

Nội dung bài tập 1.10 trang 10

Bài tập 1.10 yêu cầu tính giới hạn của hàm số tại một điểm cho trước. Cụ thể, bài tập có thể yêu cầu tính giới hạn của hàm số khi x tiến tới một giá trị cụ thể, hoặc khi x tiến tới vô cùng.

Phương pháp giải bài tập 1.10 trang 10

Để giải bài tập 1.10 trang 10, học sinh có thể áp dụng các phương pháp sau:

  1. Phương pháp trực tiếp: Thay trực tiếp giá trị của x vào hàm số để tính giới hạn. Phương pháp này chỉ áp dụng được khi hàm số liên tục tại điểm x.
  2. Phương pháp phân tích thành nhân tử: Phân tích tử số và mẫu số thành nhân tử để rút gọn biểu thức, sau đó thay giá trị của x vào để tính giới hạn.
  3. Phương pháp nhân liên hợp: Nhân cả tử số và mẫu số với liên hợp của biểu thức để khử dạng vô định.
  4. Phương pháp sử dụng định lý giới hạn: Áp dụng các định lý giới hạn để tính giới hạn của hàm số.

Lời giải chi tiết bài 1.10 trang 10

Để giúp học sinh hiểu rõ hơn về cách giải bài tập 1.10 trang 10, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể:

Ví dụ: Tính giới hạn limx→2 (x2 - 4) / (x - 2)

Lời giải:

  1. Ta phân tích tử số thành nhân tử: x2 - 4 = (x - 2)(x + 2)
  2. Thay vào biểu thức ban đầu, ta có: limx→2 (x - 2)(x + 2) / (x - 2)
  3. Rút gọn biểu thức: limx→2 (x + 2)
  4. Thay x = 2 vào biểu thức, ta được: 2 + 2 = 4

Vậy, limx→2 (x2 - 4) / (x - 2) = 4

Lưu ý khi giải bài tập về giới hạn

  • Luôn kiểm tra xem hàm số có liên tục tại điểm x hay không trước khi áp dụng phương pháp trực tiếp.
  • Khi phân tích thành nhân tử, cần chú ý đến các hằng đẳng thức và các phương pháp phân tích đa thức.
  • Khi nhân liên hợp, cần xác định đúng liên hợp của biểu thức.
  • Nắm vững các định lý giới hạn và áp dụng chúng một cách linh hoạt.

Bài tập tương tự

Để củng cố kiến thức về giới hạn, học sinh có thể tự giải các bài tập tương tự sau:

  • Tính giới hạn limx→1 (x2 - 1) / (x - 1)
  • Tính giới hạn limx→0 sin(x) / x
  • Tính giới hạn limx→∞ (1 + 1/x)x

Giaitoan.edu.vn hy vọng rằng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ tự tin hơn khi giải bài tập 1.10 trang 10 Sách bài tập Toán 12 - Kết nối tri thức và các bài tập tương tự khác. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 12