Logo Header
  1. Môn Toán
  2. Giải bài 1.50 trang 33 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.50 trang 33 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.50 trang 33 Sách bài tập Toán 12 - Kết nối tri thức

Bài 1.50 trang 33 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.50 trang 33 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

a) Chứng tỏ rằng nếu lợi nhuận (Pleft( x right)) là cực đại thì doanh thu biên bằng chi phí biên. b) Cho (Cleft( x right) = 16000 + 500x - 1,6{x^2} + 0,004{x^3}) là hàm chi phí và (pleft( x right) = 1700 - 7x) là hàm cầu. Hãy tìm mức sản xuất sẽ tối đa lợi nhuận.

Đề bài

a) Chứng tỏ rằng nếu lợi nhuận \(P\left( x \right)\) là cực đại thì doanh thu biên bằng chi phí biên.

b) Cho \(C\left( x \right) = 16000 + 500x - 1,6{x^2} + 0,004{x^3}\) là hàm chi phí và \(p\left( x \right) = 1700 - 7x\) là hàm cầu. Hãy tìm mức sản xuất sẽ tối đa lợi nhuận.

Phương pháp giải - Xem chi tiếtGiải bài 1.50 trang 33 sách bài tập toán 12 - Kết nối tri thức 1

Ý a: Tính hàm lợi nhuận \(P\left( x \right) = R\left( x \right) - C\left( x \right)\), tính đạo hàm và sử dụng ý nghĩa của cực đại.

Ý b: Xác định công thức hàm lợi nhuận \(P\left( x \right) = x \cdot p\left( x \right) - C\left( x \right)\) và tìm giá trị lớn nhất.

Lời giải chi tiết

a) Ta có hàm lợi nhuận \(P\left( x \right) = R\left( x \right) - C\left( x \right)\) trong đó \(R\left( x \right)\) là doanh thu và \(C\left( x \right)\) là chi phí.

Khi lợi nhuận đạt cực đại tại \({x_0}\) thì \(P'\left( {{x_0}} \right) = R'\left( {{x_0}} \right) - C'\left( {{x_0}} \right) = 0\) hay \(R'\left( {{x_0}} \right) = C'\left( {{x_0}} \right)\). Nói cách khác doanh thu biên bằng chi phí biên.

b) Ta có hàm lợi nhuận

\(\begin{array}{l}P\left( x \right) = x \cdot p\left( x \right) - C\left( x \right) = x\left( {1700 - 7x)} \right) - \left( {16000 + 500x - 1,6{x^2} + 0,004{x^3}} \right)\ = - 16000 + 1200x - 5,4{x^2} - 0,004{x^3}\end{array}\)

Suy ra \(P'\left( x \right) = 1200 - 10,8x - 0,012{x^2}\) khi đó \(P'\left( x \right) = 0 \Leftrightarrow 1200 - 10,8x - 0,012{x^2} = 0 \Leftrightarrow x = 100\) do \(x > 0\).

Lập bảng biến thiên

Giải bài 1.50 trang 33 sách bài tập toán 12 - Kết nối tri thức 2

Vậy mức sản xuất tối đa là 100 đơn vị hàng hóa.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1.50 trang 33 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1.50 trang 33 Sách bài tập Toán 12 - Kết nối tri thức: Phân tích chi tiết và hướng dẫn giải

Bài 1.50 trang 33 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:

  • Định nghĩa đạo hàm
  • Các quy tắc tính đạo hàm (quy tắc tổng, hiệu, tích, thương, hàm hợp)
  • Đạo hàm của các hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit)
  • Ứng dụng của đạo hàm để giải quyết các bài toán liên quan đến cực trị, đơn điệu của hàm số

Nội dung bài tập 1.50 trang 33

Bài 1.50 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Tính đạo hàm của hàm số cho trước.
  2. Tìm tập xác định của hàm số.
  3. Xác định các điểm cực trị của hàm số.
  4. Khảo sát sự biến thiên của hàm số.
  5. Vẽ đồ thị của hàm số.

Lời giải chi tiết bài 1.50 trang 33

Để giải bài 1.50 trang 33, ta thực hiện các bước sau:

  1. Bước 1: Xác định hàm số cần khảo sát.
  2. Bước 2: Tính đạo hàm cấp nhất của hàm số.
  3. Bước 3: Tìm tập xác định của hàm số.
  4. Bước 4: Tìm các điểm cực trị của hàm số bằng cách giải phương trình đạo hàm bằng 0.
  5. Bước 5: Lập bảng biến thiên của hàm số.
  6. Bước 6: Kết luận về tính đơn điệu, cực trị và giới hạn của hàm số.
  7. Bước 7: Vẽ đồ thị của hàm số.

Ví dụ, giả sử bài tập yêu cầu khảo sát hàm số y = x3 - 3x2 + 2. Ta thực hiện như sau:

  • Bước 1: Hàm số y = x3 - 3x2 + 2
  • Bước 2: y' = 3x2 - 6x
  • Bước 3: Tập xác định: D = R
  • Bước 4: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
  • Bước 5: Lập bảng biến thiên:
x-∞02+∞
y'+-+
y

Bước 6: Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Bước 7: Dựa vào bảng biến thiên, ta có thể vẽ được đồ thị của hàm số.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững các định nghĩa và quy tắc tính đạo hàm.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tầm quan trọng của việc giải bài tập 1.50 trang 33

Việc giải bài tập 1.50 trang 33 Sách bài tập Toán 12 - Kết nối tri thức không chỉ giúp bạn hiểu rõ hơn về đạo hàm mà còn rèn luyện kỹ năng giải quyết vấn đề và tư duy logic. Đây là những kỹ năng cần thiết cho việc học tập và làm việc sau này.

Giaitoan.edu.vn hy vọng rằng với lời giải chi tiết và hướng dẫn giải bài tập 1.50 trang 33 Sách bài tập Toán 12 - Kết nối tri thức, các em học sinh sẽ học tập tốt hơn và đạt kết quả cao trong môn Toán.

Tài liệu, đề thi và đáp án Toán 12