Logo Header
  1. Môn Toán
  2. Giải bài 1.17 trang 15 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.17 trang 15 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.17 trang 15 Sách bài tập Toán 12 - Kết nối tri thức

Bài 1.17 trang 15 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn của hàm số để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.17 trang 15 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Giả sử một chiếc xe tải khi di chuyển với tốc độ (x) dặm/giờ sẽ tiêu thụ nhiên liệu ở mức (frac{1}{{200}}left( {frac{{2500}}{x} + x} right)) gallon/dặm. Nếu giá nhiên liệu là (3,6) USD/gallon thì chi phí nhiên liệu (C) (tính bằng USD) khi lái xe (200) dặm với tốc độ (x) dặm/giờ được cho bởi công thức (C = Cleft( x right) = 3,6 cdot left( {frac{{2500}}{x} + x} right)). Ở đây, dặm và gallon, là những đơn vị đo lường phổ biến của Mỹ. Biết rằng tốc độ (dặm/giờ) của xe tải t

Đề bài

Giả sử một chiếc xe tải khi di chuyển với tốc độ \(x\) dặm/giờ sẽ tiêu thụ nhiên liệu ở mức \(\frac{1}{{200}}\left( {\frac{{2500}}{x} + x} \right)\) gallon/dặm. Nếu giá nhiên liệu là \(3,6\) USD/gallon thì chi phí nhiên liệu \(C\) (tính bằng USD) khi lái xe \(200\) dặm với tốc độ \(x\) dặm/giờ được cho bởi công thức

\(C = C\left( x \right) = 3,6 \cdot \left( {\frac{{2500}}{x} + x} \right)\).

Ở đây, dặm và gallon, là những đơn vị đo lường phổ biến của Mỹ. Biết rằng tốc độ (dặm/giờ) của xe tải trên một chuyến đường cao tốc bị hạn chế trong khoảng \(\left[ {10;75} \right]\). Hỏi:

a) Lái xe ở tốc độ nào thì chi phí nhiên liệu sẽ ít nhất?

b) Nếu người lái xe tải được trả lương \(28\) USD/giờ và tiền lương được cộng vào chi phí nhiên liệu thì tốc độ di chuyển của xe tải là bao nhiêu để chi phí tiết kiệm nhất (tức là tổng chi phí mà công ty phải trả cho lái xe và chi phí nhiên liệu là nhỏ nhất)?

Phương pháp giải - Xem chi tiếtGiải bài 1.17 trang 15 sách bài tập toán 12 - Kết nối tri thức 1

Ý a: Yêu cầu bài toán tương đương tìm \(x\) để \(C\left( x \right)\) đạt giá trị lớn nhất. Ta xét hàm số \(C\left( x \right) = 3,6 \cdot \left( {\frac{{2500}}{x} + x} \right)\) với \(x \in \left[ {10;75} \right]\) sau đó tìm giá trị lớn nhất trên đoạn.

Ý b:

+ Từ đề bài xác định được công thức hàm \(D\left( x \right)\) chi phí mà công ty cần trả bằng tổng lương cho người lái xe và chi phí nhiên liệu khi di chuyển \(s\) dặm.

+ Xét hàm số đó và tìm tốc độ \(x\) để hàm đạt giá trị nhỏ nhất trên đoạn. Sử dụng các cách đã học để tìm giá trị lớn nhất của một hàm số.

Lời giải chi tiết

a) Xét hàm số \(C\left( x \right) = 3,6 \cdot \left( {\frac{{2500}}{x} + x} \right)\) với \(x \in \left[ {10;75} \right]\), ta cần tìm \(x\) để \(C\left( x \right)\) đạt giá trị lớn nhất. Ta có \(C' = 3,6\left( { - \frac{{2500}}{{{x^2}}} + 1} \right)\).

Khi đó \(y' = 0 \Leftrightarrow 3,6\left( { - \frac{{2500}}{{{x^2}}} + 1} \right) = 0 \Leftrightarrow - 2500 + {x^2} = 0 \Leftrightarrow x = 50\) (vì \(x \in \left[ {10;75} \right]\)).

Ta có: \(C\left( {10} \right) = 3,6 \cdot \left( {\frac{{2500}}{{10}} + 10} \right) = 3,6 \cdot 260 = 936\); \(C\left( {50} \right) = 3,6 \cdot \left( {\frac{{2500}}{{50}} + 50} \right) = 3,6 \cdot 100 = 360\);

\(C\left( {75} \right) = 3,6 \cdot \left( {\frac{{2500}}{{75}} + 75} \right) = 390\). Suy ra \(\mathop {\min }\limits_{\left[ {10;75} \right]} C\left( x \right) = C\left( {50} \right) = 360\) hay \(x = 50\) thì \(C\left( x \right)\) đạt giá trị lớn nhất. Vậy xe tải di chuyển với tốc độ \(50\) dặm/giờ thì chi phí nhiên liệu sẽ ít nhất.

b) Giả sử \(s\)(dặm) là quãng đường di chuyển của xe. Khi đó số tiền mà công ty phải trả cho người lái xe khi di chuyển trên quãng đường này là \(28 \cdot \frac{s}{x}\) USD.

Chi phí nhiên liệu trên \(s\)(dặm) là \(\frac{s}{{200}}\left( {\frac{{2500}}{x} + x} \right)\) USD.

Suy ra tổng chi phí \(D\left( x \right)\) khi lái xe \(s\)(dặm) là:

\(D\left( x \right) = 28 \cdot \frac{s}{x} + \)\(\frac{s}{{200}}\left( {\frac{{2500}}{x} + x} \right) = s\left( {\frac{{81}}{{2x}} + \frac{x}{{200}}} \right)\) USD.

Ta có \(D'\left( x \right) = s\left( { - \frac{{81}}{{2{x^2}}} + \frac{1}{{200}}} \right) < 0{\rm{ }}\forall {\rm{x}} \in \left[ {10;75} \right]\) suy ra hàm số nghịch biến trên \(\left[ {10;75} \right]\).

Do đó, hàm số đạt giá trị nhỏ nhất trên đoạn này khi \(x\) lớn nhất hay \(x = 75\).

Vậy xe tải di chuyển với vận tốc \(75\) dặm/giờ thì sẽ tiết kiệm chi phí nhất.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1.17 trang 15 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng tài liệu toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1.17 trang 15 Sách bài tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 1.17 trang 15 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về giới hạn của hàm số. Để giải bài tập này, học sinh cần nắm vững các khái niệm cơ bản về giới hạn, các tính chất của giới hạn và các phương pháp tính giới hạn.

Nội dung bài tập 1.17 trang 15

Bài tập 1.17 yêu cầu tính giới hạn của các hàm số khi x tiến tới một giá trị cụ thể. Các hàm số có thể là các hàm đa thức, hàm phân thức, hàm lượng giác hoặc các hàm số khác.

Phương pháp giải bài tập về giới hạn

  1. Kiểm tra dạng vô định: Xác định xem giới hạn có dạng vô định (ví dụ: 0/0, ∞/∞) hay không.
  2. Phân tích và rút gọn biểu thức: Nếu có dạng vô định, cần phân tích và rút gọn biểu thức để khử dạng vô định. Các phương pháp rút gọn bao gồm phân tích thành nhân tử, chia đa thức, nhân liên hợp.
  3. Áp dụng các quy tắc tính giới hạn: Sau khi rút gọn, áp dụng các quy tắc tính giới hạn để tính giới hạn của hàm số.
  4. Sử dụng định lý giới hạn: Trong một số trường hợp, cần sử dụng định lý giới hạn để tính giới hạn.

Lời giải chi tiết bài 1.17 trang 15

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích và giải chi tiết từng câu hỏi trong bài 1.17 trang 15 Sách bài tập Toán 12 - Kết nối tri thức.

Câu a: Tính lim (x→2) (x^2 - 4) / (x - 2)

Ta có: lim (x→2) (x^2 - 4) / (x - 2) = lim (x→2) (x - 2)(x + 2) / (x - 2) = lim (x→2) (x + 2) = 2 + 2 = 4

Câu b: Tính lim (x→0) sin(x) / x

Đây là một giới hạn lượng giác cơ bản. Ta có: lim (x→0) sin(x) / x = 1

Câu c: Tính lim (x→∞) (2x + 1) / (x - 3)

Ta có: lim (x→∞) (2x + 1) / (x - 3) = lim (x→∞) (2 + 1/x) / (1 - 3/x) = (2 + 0) / (1 - 0) = 2

Lưu ý khi giải bài tập về giới hạn

  • Luôn kiểm tra xem giới hạn có dạng vô định hay không trước khi bắt đầu giải.
  • Sử dụng các phương pháp rút gọn biểu thức một cách linh hoạt và chính xác.
  • Nắm vững các quy tắc tính giới hạn và định lý giới hạn.
  • Thực hành giải nhiều bài tập khác nhau để làm quen với các dạng bài tập và rèn luyện kỹ năng giải bài tập.

Ứng dụng của kiến thức về giới hạn

Kiến thức về giới hạn có ứng dụng rộng rãi trong nhiều lĩnh vực của Toán học và các ngành khoa học khác. Ví dụ, giới hạn được sử dụng để định nghĩa đạo hàm, tích phân, chuỗi và các khái niệm quan trọng khác. Ngoài ra, giới hạn còn được sử dụng để mô tả các hiện tượng vật lý, kinh tế và các hiện tượng khác trong thực tế.

Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh sẽ hiểu rõ hơn về cách giải bài 1.17 trang 15 Sách bài tập Toán 12 - Kết nối tri thức và tự tin hơn trong quá trình học tập. Chúc các em học tốt!

Dạng bài tậpPhương pháp giải
Giới hạn dạng vô địnhRút gọn biểu thức, sử dụng quy tắc L'Hopital
Giới hạn lượng giácSử dụng các giới hạn lượng giác cơ bản
Giới hạn vô cùngChia cả tử và mẫu cho lũy thừa cao nhất của x

Tài liệu, đề thi và đáp án Toán 12