Bài 4.43 trang 21 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.43 trang 21, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
a) (intlimits_0^3 {left| {3 - x} right|dx} ); b) (intlimits_0^2 {left( {{e^x} - 4{x^3}} right)dx} ); c) (intlimits_0^{frac{pi }{2}} {left( {sin x + cos x} right)dx} ).
Đề bài
a) \(\int\limits_0^3 {\left| {3 - x} \right|dx} \);
b) \(\int\limits_0^2 {\left( {{e^x} - 4{x^3}} \right)dx} \)
c) \(\int\limits_0^{\frac{\pi }{2}} {\left( {\sin x + \cos x} \right)dx} \).
Phương pháp giải - Xem chi tiết
Ý a: Bỏ dấu trị tuyệt đối theo điều kiện \(\left| {3 - x} \right| = 3 - x\) với \(x \in \left[ {0;3} \right]\). Sử dụng các công thức tìm nguyên hàm cơ bản của hàm lũy thừa.
Ý b: Áp dụng các công thức tìm nguyên hàm cơ bản của hàm mũ và hàm lũy thừa.
Ý c: Áp dụng các công thức tìm nguyên hàm cơ bản của hàm lượng giác.
Lời giải chi tiết
a) Ta có \(\left| {3 - x} \right| = 3 - x\) với \(x \in \left[ {0;3} \right]\).
Suy ra \(\int\limits_0^3 {\left| {3 - x} \right|dx} = \int\limits_0^3 {\left( {3 - x} \right)dx} = \left. {\left( {3x - \frac{{{x^2}}}{2}} \right)} \right|_0^3 = 9 - \frac{9}{2} = \frac{9}{2}\).
b) Ta có \(\int\limits_0^2 {\left( {{e^x} - 4{x^3}} \right)dx} = \left. {\left( {{e^x} - {x^4}} \right)} \right|_0^2 = {e^2} - {2^4} - 1 = {e^2} - 17\).
c) \(\int\limits_0^{\frac{\pi }{2}} {\left( {\sin x + \cos x} \right)dx} = \left. {\left( { - \cos x + \sin x} \right)} \right|_0^{\frac{\pi }{2}} = 1 + 1 = 2\).
Bài 4.43 trang 21 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Dưới đây là đề bài và lời giải chi tiết bài 4.43 trang 21 sách bài tập Toán 12 - Kết nối tri thức:
Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
f'(x) = 3x2 - 6x
3x2 - 6x = 0
3x(x - 2) = 0
Suy ra x = 0 hoặc x = 2
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Hàm số f(x) đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
Hàm số f(x) đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.
Giải thích chi tiết:
Để tìm các điểm cực trị của hàm số, ta thực hiện các bước sau:
Trong bài toán này, ta tìm được hai điểm nghi ngờ là điểm cực trị là x = 0 và x = 2. Bằng cách lập bảng xét dấu f'(x), ta thấy rằng:
Do đó, hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = 2.
Lưu ý:
Để kiểm tra kết quả, bạn có thể vẽ đồ thị của hàm số f(x) và quan sát các điểm cực trị trên đồ thị.
Bài tập này giúp học sinh rèn luyện kỹ năng tính đạo hàm và vận dụng đạo hàm để giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết này, các em học sinh sẽ hiểu rõ hơn về bài tập và tự tin làm bài tập tốt hơn.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!