Bài 5.43 trang 38 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5.43 trang 38 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Trong không gian Oxyz, cho mặt cầu (left( S right):{left( {x - 2} right)^2} + {left( {y + 1} right)^2} + {left( {z - 3} right)^2} = 9) và điểm (Aleft( {2; - 1;1} right)). a) Tìm tâm I và bán kính R của mặt cầu (S). b) Chứng minh rằng điểm A nằm trong mặt cầu (S). c) Viết phương trình mặt phẳng (P) đi qua điểm A sao cho khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (P) là lớn nhất.
Đề bài
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 3} \right)^2} = 9\) và điểm \(A\left( {2; - 1;1} \right)\).
a) Tìm tâm I và bán kính R của mặt cầu (S).
b) Chứng minh rằng điểm A nằm trong mặt cầu (S).
c) Viết phương trình mặt phẳng (P) đi qua điểm A sao cho khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (P) là lớn nhất.
Phương pháp giải - Xem chi tiết
Ý a: Từ phương trình mặt cầu suy ra tâm và bán kính.
Ý b: So sánh IA và bán kính mặt cầu.
Ý c: IA là vectơ pháp tuyến của (P).
Lời giải chi tiết
a) Mặt cầu (S) có tâm \(I\left( {2; - 1;3} \right)\), bán kính \(R = 3\).
b) Ta có \(IA = \sqrt {{2^2}} = 2 < 3 = R\). Suy ra điểm A nằm trong mặt cầu (S).
c) Kẻ IH vuông góc với mặt phẳng (P) thì \(IH \le IA\) nên IH lớn nhất khi H trùng với A.
Để khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (P) là lớn nhất thì IH lớn nhất.
Khi đó A là hình chiếu của I trên (P).
Suy ra mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow {IA} = \left( {0;0; - 2} \right)\).
Phương trình mặt phẳng (P) là \( - 2\left( {z - 1} \right) = 0 \Leftrightarrow z - 1 = 0\).
Bài 5.43 trang 38 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Dưới đây là đề bài và lời giải chi tiết bài 5.43 trang 38 Sách bài tập Toán 12 - Kết nối tri thức:
Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
f'(x) = 3x2 - 6x
3x2 - 6x = 0
3x(x - 2) = 0
Suy ra x = 0 hoặc x = 2
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Hàm số f(x) đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
Hàm số f(x) đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.
Lưu ý:
Để củng cố kiến thức về đạo hàm và các ứng dụng của đạo hàm, các em học sinh có thể tham khảo thêm các bài tập tương tự sau:
Giaitoan.edu.vn hy vọng rằng lời giải chi tiết bài 5.43 trang 38 Sách bài tập Toán 12 - Kết nối tri thức sẽ giúp các em học sinh hiểu rõ hơn về kiến thức đạo hàm và tự tin làm bài tập. Chúc các em học tốt!