Logo Header
  1. Môn Toán
  2. Giải bài 3.14 trang 67 sách bài tập toán 12 - Kết nối tri thức

Giải bài 3.14 trang 67 sách bài tập toán 12 - Kết nối tri thức

Giải bài 3.14 trang 67 Sách bài tập Toán 12 - Kết nối tri thức

Bài 3.14 trang 67 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3.14 trang 67 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Cho mẫu số liệu ghép nhóm về tuổi thọ của 20 thiết bị điện tử sau: Nếu thay các nhóm tương ứng bằng (left[ {3;5} right),{rm{ }}left[ {5;7} right),{rm{ }}left[ {7;9} right),{rm{ }}left[ {9;11} right)) thì khoảng tứ phân vị sẽ thay đổi như thế nào? A. Tăng. B. Giảm. C. Không thay đổi.

Đề bài

Cho mẫu số liệu ghép nhóm về tuổi thọ của 20 thiết bị điện tử sau:

Giải bài 3.14 trang 67 sách bài tập toán 12 - Kết nối tri thức 1Nếu thay các nhóm tương ứng bằng \(\left[ {3;5} \right),{\rm{ }}\left[ {5;7} \right),{\rm{ }}\left[ {7;9} \right),{\rm{ }}\left[ {9;11} \right)\) thì khoảng tứ phân vị sẽ thay đổi như thế nào?A. Tăng.

B. Giảm.

C. Không thay đổi.

Phương pháp giải - Xem chi tiếtGiải bài 3.14 trang 67 sách bài tập toán 12 - Kết nối tri thức 2

Ta sẽ tính khoảng tứ phân vị và so sánh đáp án với bài 3.11. Ta có thể quan sát công thức rồi đối chiếu thay vì tính chi tiết ra đáp án cuối cùng.

Lời giải chi tiết

Đáp án: C.

Vị trí của \({Q_1}\) là \(\frac{n}{4} = 5\) suy ra nhóm chứa tứ phân vị thứ nhất là \(\left[ {5;7} \right)\).

Ta có \({Q_1} = 5 + \frac{{\frac{{1 \cdot 20}}{4} - 2}}{8} \cdot 2 = 5,75\).

Tương tự có vị trí của \({Q_3}\) là \(\frac{{3n}}{4} = 15\) suy ra nhóm chứa tứ phân vị thứ ba là \(\left[ {7;9} \right)\).

Do đó \({Q_3} = 7 + \frac{{\frac{{3 \cdot 20}}{4} - 10}}{7} \cdot 2 = \frac{{59}}{7}\).

Suy ra khoảng tứ phân vị là \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{59}}{7} - 5,75 = \frac{{75}}{{28}} \approx 2,68\). Do đó khoảng tứ phân không đổi. Vậy ta chọn đáp án C.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 3.14 trang 67 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng soạn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 3.14 trang 67 Sách bài tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết và dễ hiểu

Bài 3.14 trang 67 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về:

  • Định nghĩa đạo hàm
  • Các quy tắc tính đạo hàm (quy tắc tổng, hiệu, tích, thương, hàm hợp)
  • Đạo hàm của các hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit)
  • Ứng dụng của đạo hàm để giải quyết các bài toán thực tế

Nội dung bài tập 3.14:

Bài tập yêu cầu tìm đạo hàm của hàm số cho trước. Thông thường, hàm số sẽ có dạng phức tạp, đòi hỏi học sinh phải áp dụng linh hoạt các quy tắc tính đạo hàm đã học.

Lời giải chi tiết:

Để giải bài tập này, chúng ta sẽ thực hiện các bước sau:

  1. Phân tích hàm số thành các thành phần đơn giản hơn.
  2. Áp dụng các quy tắc tính đạo hàm để tính đạo hàm của từng thành phần.
  3. Kết hợp các kết quả lại để tìm đạo hàm của hàm số ban đầu.

Ví dụ minh họa:

Giả sử hàm số cần tìm đạo hàm là: f(x) = (x2 + 1) * sin(x)

Chúng ta sẽ áp dụng quy tắc tích để tính đạo hàm:

f'(x) = (x2 + 1)' * sin(x) + (x2 + 1) * sin'(x)

f'(x) = 2x * sin(x) + (x2 + 1) * cos(x)

Lưu ý quan trọng:

  • Khi tính đạo hàm, cần chú ý đến thứ tự thực hiện các phép toán.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Luyện tập thường xuyên để nắm vững các quy tắc tính đạo hàm và kỹ năng giải bài tập.

Mở rộng kiến thức:

Ngoài bài tập 3.14, các em học sinh có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 12 - Kết nối tri thức để củng cố kiến thức và rèn luyện kỹ năng. Bên cạnh đó, các em cũng có thể tìm kiếm các tài liệu học tập trực tuyến, các video hướng dẫn giải bài tập trên các trang web, kênh YouTube uy tín.

Ứng dụng của đạo hàm trong thực tế:

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính vận tốc và gia tốc của vật chuyển động.
  • Tìm cực trị của hàm số.
  • Giải quyết các bài toán tối ưu hóa.
  • Phân tích sự thay đổi của các đại lượng trong các lĩnh vực khác nhau.

Kết luận:

Bài 3.14 trang 67 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải bài tập. Hy vọng với lời giải chi tiết và dễ hiểu mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong việc học tập và đạt kết quả tốt trong môn Toán.

Để hiểu rõ hơn về đạo hàm và các ứng dụng của nó, các em nên dành thời gian ôn tập lý thuyết, làm thêm nhiều bài tập và tìm kiếm các nguồn tài liệu học tập uy tín. Chúc các em học tập tốt!

Công thức đạo hàm cơ bảnVí dụ
(xn)' = nxn-1(x3)' = 3x2
(sin x)' = cos x(sin 2x)' = 2cos 2x
(cos x)' = -sin x(cos x + sin x)' = -sin x + cos x

Tài liệu, đề thi và đáp án Toán 12