Bài 4.12 trang 12 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.12 trang 12, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho (intlimits_0^5 {fleft( x right)dx} = 6) và (intlimits_0^5 {gleft( x right)dx} = 2). Hãy tính: a) (intlimits_0^5 {left[ {2fleft( x right) + 3gleft( x right)} right]dx} ); b) (intlimits_0^5 {left[ {2fleft( x right) - 3gleft( x right)} right]dx} ).
Đề bài
Cho \(\int\limits_0^5 {f\left( x \right)dx} = 6\) và \(\int\limits_0^5 {g\left( x \right)dx} = 2\). Hãy tính:
a) \(\int\limits_0^5 {\left[ {2f\left( x \right) + 3g\left( x \right)} \right]dx} \);
b) \(\int\limits_0^5 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} \).
Phương pháp giải - Xem chi tiết
Ý a: Áp dụng tính chất của tích phân để biến đổi sao cho xuất hiện các tích phân \(\int\limits_0^5 {f\left( x \right)dx} \) và \(\int\limits_0^5 {g\left( x \right)dx} = 2\) sau đó thay số và tính toán.
Ý b: Tương tự ý a.
Lời giải chi tiết
a) Ta có \(\int\limits_0^5 {\left[ {2f\left( x \right) + 3g\left( x \right)} \right]dx} = 2\int\limits_0^5 {f\left( x \right)dx} + 3\int\limits_0^5 {g\left( x \right)dx} = 2 \cdot 6 + 3 \cdot 2 = 18\).
b) Ta có \(\int\limits_0^5 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} = 2\int\limits_0^5 {f\left( x \right)dx} - 3\int\limits_0^5 {g\left( x \right)dx} = 2 \cdot 6 - 3 \cdot 2 = 6\).
Bài 4.12 trang 12 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Bài tập này thường yêu cầu học sinh tìm đạo hàm của hàm số, xét dấu đạo hàm để xác định khoảng đồng biến, nghịch biến, và tìm cực trị của hàm số. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết bài toán này.
Bài tập 4.12 thường có dạng như sau: Cho hàm số y = f(x). Hãy tìm đạo hàm f'(x), xét dấu f'(x) và kết luận về tính đơn điệu của hàm số. Ngoài ra, bài tập có thể yêu cầu tìm cực trị của hàm số bằng cách giải phương trình f'(x) = 0 và xét dấu đạo hàm cấp hai.
Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Hãy tìm đạo hàm, xét dấu đạo hàm và kết luận về tính đơn điệu của hàm số.
Giải:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
y' | + | - | + | |
y | Đồng biến | Nghịch biến | Đồng biến |
Kết luận: Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
Bài tập 4.12 trang 12 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng vào giải quyết các bài toán thực tế. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, các em học sinh sẽ tự tin hơn khi làm bài tập này.