Logo Header
  1. Môn Toán
  2. Giải bài 1.7 trang 9 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.7 trang 9 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.7 trang 9 Sách bài tập Toán 12 - Kết nối tri thức

Bài 1.7 trang 9 sách bài tập Toán 12 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về giới hạn của hàm số. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm cơ bản về giới hạn và áp dụng các định lý để tính toán giới hạn của hàm số tại một điểm.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.7 trang 9 sách bài tập Toán 12 Kết nối tri thức, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Một nhà phân phối đồ chơi trẻ em xác định hàm chi phí (Cleft( x right)) và hàm doanh thu (Rleft( x right)) (đều tính bằng trăm nghìn đồng) cho một loại đồ chơi như sau: (begin{array}{l}Cleft( x right) = 1,2x - 0,0001{x^2},0 le x le 6{rm{ }}000,Rleft( x right) = 3,6x - 0,0005{x^2},0 le x le 6{rm{ }}000,end{array}) Trong đó (x) là số lượng đồ chơi loại đó được sản xuất và bán ra. Xác định khoảng của (x) để hàm lợi nhuận (Pleft( x right) = Rleft( x right) - Cle

Đề bài

Một nhà phân phối đồ chơi trẻ em xác định hàm chi phí \(C\left( x \right)\) và hàm doanh thu \(R\left( x \right)\) (đều tính bằng trăm nghìn đồng) cho một loại đồ chơi như sau:

\(\begin{array}{l}C\left( x \right) = 1,2x - 0,0001{x^2},0 \le x \le 6{\rm{ }}000,\\R\left( x \right) = 3,6x - 0,0005{x^2},0 \le x \le 6{\rm{ }}000.\end{array}\)

Trong đó \(x\) là số lượng đồ chơi loại đó được sản xuất và bán ra. Xác định khoảng của \(x\) để hàm lợi nhuận \(P\left( x \right) = R\left( x \right) - C\left( x \right)\) đồng biến trên khoảng đó. Giải thích ý nghĩa thực tiễn của kết quả nhận được.

Phương pháp giải - Xem chi tiếtGiải bài 1.7 trang 9 sách bài tập toán 12 - Kết nối tri thức 1

- Viết công thức hàm lợi nhuận \(P\left( x \right)\) theo đề bài sau đó tính \(P'\left( x \right)\)

- Tìm điều kiện của \(x\) để \(P'\left( x \right) > 0\) sau đó kết hợp với điều kiện của \(x\) trong đề để tìm ra khoảng đồng biến

- Dùng kiến thức về hàm đồng biến để giải thích ý nghĩa thực tiễn, trong khoảng đồng biến tìm được, khi giá trị của biến tăng thì giá trị của hàm số cũng tăng.

Lời giải chi tiết

Ta có hàm lợi nhuận

\(P\left( x \right) = R\left( x \right) - C\left( x \right) = \left( {3,6x - 0,0005{x^2}} \right) - \left( {1,2x - 0,0001{x^2}} \right) = - 0,0004{x^2} + 2,4x,0 \le x \le 6{\rm{ }}000\)

Có \(P'\left( x \right) = - 0,0008x + 2,4\) khi đó \(P'\left( x \right) > 0 \Leftrightarrow - 0,0008x + 2,4 > 0 \Leftrightarrow x < 3000.\)

Suy ra hàm số \(P\left( x \right)\) đồng biến trên khoảng \(\left( {0;3000} \right)\).

Điều đó nghĩa là nếu số lượng đồ chơi loại đang xét được sản xuất và bán ra nằm trong khoảng \(\left( {0;3000} \right)\) thì khi sản xuất và bán ra càng nhiều đồ chơi thì lợi nhuận sẽ càng cao.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1.7 trang 9 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng học toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1.7 trang 9 Sách bài tập Toán 12 - Kết nối tri thức: Phương pháp và đáp án chi tiết

Bài 1.7 trang 9 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về giới hạn của hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:

  • Khái niệm giới hạn của hàm số: Hiểu rõ ý nghĩa của giới hạn khi x tiến tới một giá trị cụ thể.
  • Các định lý về giới hạn: Định lý về giới hạn của tổng, hiệu, tích, thương và hàm hợp.
  • Các dạng giới hạn cơ bản: Giới hạn của các hàm số đơn giản như hằng số, x, x2,...

Nội dung bài tập 1.7: Bài tập yêu cầu tính giới hạn của các hàm số tại một điểm cho trước. Các hàm số có thể có dạng đa thức, phân thức hoặc các hàm số khác.

Lời giải chi tiết bài 1.7 trang 9

Để giải bài tập này, chúng ta sẽ áp dụng các định lý về giới hạn và các kỹ năng biến đổi đại số. Dưới đây là lời giải chi tiết cho từng câu hỏi:

Câu a: Tính limx→2 (x2 - 4) / (x - 2)

Ta có thể phân tích tử thức thành nhân tử:

(x2 - 4) = (x - 2)(x + 2)

Do đó:

limx→2 (x2 - 4) / (x - 2) = limx→2 (x - 2)(x + 2) / (x - 2) = limx→2 (x + 2) = 2 + 2 = 4

Câu b: Tính limx→1 (x3 - 1) / (x - 1)

Tương tự, ta phân tích tử thức:

(x3 - 1) = (x - 1)(x2 + x + 1)

Do đó:

limx→1 (x3 - 1) / (x - 1) = limx→1 (x - 1)(x2 + x + 1) / (x - 1) = limx→1 (x2 + x + 1) = 12 + 1 + 1 = 3

Câu c: Tính limx→0 sin(x) / x

Đây là một giới hạn lượng giác cơ bản. Ta biết rằng:

limx→0 sin(x) / x = 1

Lưu ý khi giải bài tập về giới hạn

  • Luôn kiểm tra xem có thể rút gọn biểu thức trước khi tính giới hạn hay không.
  • Sử dụng các định lý về giới hạn một cách chính xác.
  • Đối với các giới hạn lượng giác, cần nhớ các giới hạn cơ bản.
  • Nếu gặp khó khăn, hãy thử sử dụng quy tắc L'Hôpital (nếu phù hợp).

Ứng dụng của kiến thức về giới hạn

Kiến thức về giới hạn có ứng dụng rộng rãi trong nhiều lĩnh vực của toán học, bao gồm:

  • Tính đạo hàm của hàm số.
  • Tính tích phân của hàm số.
  • Nghiên cứu sự hội tụ của dãy số và chuỗi số.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 12 Kết nối tri thức hoặc trên các trang web học toán online.

Hy vọng lời giải chi tiết này sẽ giúp bạn hiểu rõ hơn về cách giải bài 1.7 trang 9 sách bài tập Toán 12 Kết nối tri thức. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12