Bài 1.51 trang 33 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài 1.51 này, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\left( {a;b} \right)\). Xét các mệnh đề sau: (I) Nếu \(f'\left( x \right) \ge 0\) với mọi \(x \in \left( {a;b} \right)\) và dấu bằng chỉ xảy ra tại một số hữu hạn điểm trên \(\left( {a;b} \right)\) thì hàm số đồng biến trên \(\left( {a;b} \right)\). (II) Nếu \(f'\left( x \right) \le 0\) với mọi \(x \in \left( {a;b} \right)\) và dấu bằng chỉ xảy ra tại một số hữu hạn điểm trên \(\left( {a;b} \right)\) thì hàm số nghịch biến trên \(\left( {a
Đề bài
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\left( {a;b} \right)\). Xét các mệnh đề sau:
(I) Nếu \(f'\left( x \right) \ge 0\) với mọi \(x \in \left( {a;b} \right)\) và dấu bằng chỉ xảy ra tại một số hữu hạn điểm trên \(\left( {a;b} \right)\) thì hàm số đồng biến trên \(\left( {a;b} \right)\).
(II) Nếu \(f'\left( x \right) \le 0\) với mọi \(x \in \left( {a;b} \right)\) và dấu bằng chỉ xảy ra tại một số hữu hạn điểm trên \(\left( {a;b} \right)\) thì hàm số nghịch biến trên \(\left( {a;b} \right)\).
(III) Nếu \(f'\left( x \right) \le 0\) với mọi \(x \in \left( {a;b} \right)\) thì hàm số nghịch biến trên khoảng \(\left( {a;b} \right)\).
(IV) Nếu \(f'\left( x \right) \ge 0\) với mọi \(x \in \left( {a;b} \right)\) thì hàm số đồng biến trên khoảng \(\left( {a;b} \right)\).
Trong các mệnh đề trên, mệnh đề nào đúng, mệnh đề nào sai?
A. I, II, III và IV đúng.
B. I, II và III đúng, còn IV sai.
C. I, II và IV đúng, còn III sai.
D. I và II đúng, còn III và IV sai.
Phương pháp giải - Xem chi tiết
+ Nắm rõ kiến thức về hàm số đồng biến, nghịch biến đã học
+ Chỉ ra tính đúng/sai của từng mệnh đề, mệnh đề sai dùng phản ví dụ chứng minh.
Lời giải chi tiết
Đáp án: D.
Nhắc lại kiến thức về đồng biến, nghịch biến trong sách giáo khoa:
“Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên khoảng \(K\). Nếu \(f'\left( x \right) > 0\) (\(f'\left( x \right) < 0\)) với mọi \(x \in K\) và \(f'\left( x \right) = 0\) chỉ tại một số hữu hạn điểm của \(K\) thì hàm số \(f\left( x \right)\) đồng biến (nghịch biến) trên khoảng \(K\).”
Từ nhận xét trên ta thấy mệnh đề (I) và (II) đúng.
Mệnh đề (III) sai do nếu xét \(f\left( x \right)\) là hàm hằng thì ta luôn có \(f'\left( x \right) = 0 \le 0\) nhưng \(f\left( x \right)\) không nghịch biến. Sử dụng phản ví dụ tương tự ta có (IV) là mệnh đề sai.
Vậy ta chọn D.
Bài 1.51 trang 33 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về:
Bài 1.51 thường yêu cầu học sinh thực hiện các thao tác sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 1.51, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x3 - 3x2 + 2x + 1.
Bước 1: Áp dụng quy tắc tính đạo hàm của hàm đa thức
f'(x) = 3x2 - 6x + 2
Bước 2: Tìm đạo hàm cấp hai
f''(x) = 6x - 6
Bước 3: Xác định các điểm cực trị
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:
3x2 - 6x + 2 = 0
Sử dụng công thức nghiệm của phương trình bậc hai, ta tìm được hai nghiệm x1 và x2.
Bước 4: Khảo sát sự biến thiên của hàm số
Dựa vào dấu của đạo hàm cấp hai, ta có thể xác định tính chất của các điểm cực trị (cực đại hoặc cực tiểu).
Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:
Bài 1.51 trang 33 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các mẹo giải bài tập hiệu quả trên đây, các em học sinh sẽ tự tin hơn khi giải quyết các bài toán liên quan đến đạo hàm.