Logo Header
  1. Môn Toán
  2. Giải bài 1.51 trang 33 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.51 trang 33 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.51 trang 33 Sách bài tập Toán 12 - Kết nối tri thức

Bài 1.51 trang 33 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài 1.51 này, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\left( {a;b} \right)\). Xét các mệnh đề sau: (I) Nếu \(f'\left( x \right) \ge 0\) với mọi \(x \in \left( {a;b} \right)\) và dấu bằng chỉ xảy ra tại một số hữu hạn điểm trên \(\left( {a;b} \right)\) thì hàm số đồng biến trên \(\left( {a;b} \right)\). (II) Nếu \(f'\left( x \right) \le 0\) với mọi \(x \in \left( {a;b} \right)\) và dấu bằng chỉ xảy ra tại một số hữu hạn điểm trên \(\left( {a;b} \right)\) thì hàm số nghịch biến trên \(\left( {a

Đề bài

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\left( {a;b} \right)\). Xét các mệnh đề sau:

(I) Nếu \(f'\left( x \right) \ge 0\) với mọi \(x \in \left( {a;b} \right)\) và dấu bằng chỉ xảy ra tại một số hữu hạn điểm trên \(\left( {a;b} \right)\) thì hàm số đồng biến trên \(\left( {a;b} \right)\).

(II) Nếu \(f'\left( x \right) \le 0\) với mọi \(x \in \left( {a;b} \right)\) và dấu bằng chỉ xảy ra tại một số hữu hạn điểm trên \(\left( {a;b} \right)\) thì hàm số nghịch biến trên \(\left( {a;b} \right)\).

(III) Nếu \(f'\left( x \right) \le 0\) với mọi \(x \in \left( {a;b} \right)\) thì hàm số nghịch biến trên khoảng \(\left( {a;b} \right)\).

(IV) Nếu \(f'\left( x \right) \ge 0\) với mọi \(x \in \left( {a;b} \right)\) thì hàm số đồng biến trên khoảng \(\left( {a;b} \right)\).

Trong các mệnh đề trên, mệnh đề nào đúng, mệnh đề nào sai?

A. I, II, III và IV đúng.

B. I, II và III đúng, còn IV sai.

C. I, II và IV đúng, còn III sai.

D. I và II đúng, còn III và IV sai.

Phương pháp giải - Xem chi tiếtGiải bài 1.51 trang 33 sách bài tập toán 12 - Kết nối tri thức 1

+ Nắm rõ kiến thức về hàm số đồng biến, nghịch biến đã học

+ Chỉ ra tính đúng/sai của từng mệnh đề, mệnh đề sai dùng phản ví dụ chứng minh.

Lời giải chi tiết

Đáp án: D.

Nhắc lại kiến thức về đồng biến, nghịch biến trong sách giáo khoa:

“Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên khoảng \(K\). Nếu \(f'\left( x \right) > 0\) (\(f'\left( x \right) < 0\)) với mọi \(x \in K\) và \(f'\left( x \right) = 0\) chỉ tại một số hữu hạn điểm của \(K\) thì hàm số \(f\left( x \right)\) đồng biến (nghịch biến) trên khoảng \(K\).”

Từ nhận xét trên ta thấy mệnh đề (I) và (II) đúng.

Mệnh đề (III) sai do nếu xét \(f\left( x \right)\) là hàm hằng thì ta luôn có \(f'\left( x \right) = 0 \le 0\) nhưng \(f\left( x \right)\) không nghịch biến. Sử dụng phản ví dụ tương tự ta có (IV) là mệnh đề sai.

Vậy ta chọn D.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1.51 trang 33 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1.51 trang 33 Sách bài tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 1.51 trang 33 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về:

  • Định nghĩa đạo hàm
  • Các quy tắc tính đạo hàm (quy tắc tổng, hiệu, tích, thương, hàm hợp)
  • Đạo hàm của các hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit)
  • Ứng dụng của đạo hàm để giải quyết các bài toán thực tế

Nội dung bài tập 1.51

Bài 1.51 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Tính đạo hàm của hàm số cho trước.
  2. Tìm đạo hàm cấp hai của hàm số.
  3. Xác định các điểm cực trị của hàm số.
  4. Khảo sát sự biến thiên của hàm số.
  5. Giải các bài toán liên quan đến ứng dụng của đạo hàm (ví dụ: tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng cho trước).

Lời giải chi tiết bài 1.51 trang 33

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 1.51, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x3 - 3x2 + 2x + 1.

Bước 1: Áp dụng quy tắc tính đạo hàm của hàm đa thức

f'(x) = 3x2 - 6x + 2

Bước 2: Tìm đạo hàm cấp hai

f''(x) = 6x - 6

Bước 3: Xác định các điểm cực trị

Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:

3x2 - 6x + 2 = 0

Sử dụng công thức nghiệm của phương trình bậc hai, ta tìm được hai nghiệm x1 và x2.

Bước 4: Khảo sát sự biến thiên của hàm số

Dựa vào dấu của đạo hàm cấp hai, ta có thể xác định tính chất của các điểm cực trị (cực đại hoặc cực tiểu).

Mẹo giải bài tập đạo hàm hiệu quả

  • Nắm vững các quy tắc tính đạo hàm.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính cầm tay để kiểm tra kết quả.
  • Tham khảo các tài liệu học tập, sách giáo khoa, sách bài tập.
  • Tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè khi gặp khó khăn.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính vận tốc và gia tốc của một vật chuyển động.
  • Tìm giá trị lớn nhất và giá trị nhỏ nhất của một hàm số.
  • Giải các bài toán tối ưu hóa.
  • Phân tích sự thay đổi của các hiện tượng vật lý, kinh tế, xã hội.

Kết luận

Bài 1.51 trang 33 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các mẹo giải bài tập hiệu quả trên đây, các em học sinh sẽ tự tin hơn khi giải quyết các bài toán liên quan đến đạo hàm.

Tài liệu, đề thi và đáp án Toán 12