Logo Header
  1. Môn Toán
  2. Giải bài 4.21 trang 17 sách bài tập toán 12 - Kết nối tri thức

Giải bài 4.21 trang 17 sách bài tập toán 12 - Kết nối tri thức

Giải bài 4.21 trang 17 Sách bài tập Toán 12 - Kết nối tri thức

Bài 4.21 trang 17 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.21 trang 17 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Tính diện tích của các hình phẳng được tô màu dưới đây:

Đề bài

Tính diện tích của các hình phẳng được tô màu dưới đây:

Giải bài 4.21 trang 17 sách bài tập toán 12 - Kết nối tri thức 1

Phương pháp giải - Xem chi tiếtGiải bài 4.21 trang 17 sách bài tập toán 12 - Kết nối tri thức 2

Ý a: Xác định xem hình vẽ được giới hạn bởi các đường nào sau đó sử dụng công thức tính diện tích bằng tích phân.

Ý b: Xác định xem hình vẽ được giới hạn bởi các đường nào sau đó sử dụng công thức tính diện tích bằng tích phân.

Lời giải chi tiết

a) Hình phẳng được giới hạn bởi các đường \(y = f\left( x \right),x = 0\) và \(x = 5\).

Diện tích cần tìm là \(S = \int\limits_0^5 {\left| {{x^2} - 4} \right|dx} = \int\limits_0^2 {\left| {{x^2} - 4} \right|dx} + \int\limits_2^5 {\left| {{x^2} - 4} \right|dx} = \int\limits_0^2 {\left( { - {x^2} + 4} \right)dx} + \int\limits_2^5 {\left( {{x^2} - 4} \right)dx} \)

\( = \left. {\left( {\frac{{ - {x^3}}}{3} + 4x} \right)} \right|_0^2 + \left. {\left( {\frac{{{x^3}}}{3} - 4x} \right)} \right|_2^5 = \frac{{ - 8}}{3} + 8 + \frac{{125}}{3} - 20 - \frac{8}{3} + 8 = \frac{{97}}{3}\).

b) Hình phẳng cần tìm được giới hạn bởi các đường \(y = - {x^2} + 9,{\rm{ }}y = 2x + 1,{\rm{ }}x = 0\) và \(x = 2\).

Diện tích cần tìm là

\(S = \int\limits_0^2 {\left| {\left( { - {x^2} + 9} \right) - \left( {2x + 1} \right)} \right|dx} = \int\limits_0^2 {\left[ {\left( { - {x^2} + 9} \right) - \left( {2x + 1} \right)} \right]dx} = \int\limits_0^2 {\left( { - {x^2} + 9 - 2x - 1} \right)dx} \)

\( = \int\limits_0^2 {\left( { - {x^2} - 2x + 8} \right)dx} = \left. {\left( { - \frac{{{x^3}}}{3} - {x^2} + 8x} \right)} \right|_0^2 = - \frac{8}{3} - 4 + 16 = \frac{{28}}{3}\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 4.21 trang 17 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng học toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 4.21 trang 17 Sách bài tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 4.21 trang 17 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về:

  • Định nghĩa đạo hàm
  • Các quy tắc tính đạo hàm (quy tắc cộng, trừ, nhân, chia, đạo hàm hợp)
  • Đạo hàm của các hàm số cơ bản (hàm số đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit)
  • Ứng dụng của đạo hàm để giải quyết các bài toán thực tế

Nội dung bài tập 4.21 trang 17

Bài 4.21 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Tính đạo hàm của hàm số cho trước.
  2. Tìm điểm cực trị của hàm số.
  3. Khảo sát sự biến thiên của hàm số.
  4. Giải các bài toán liên quan đến ứng dụng của đạo hàm (ví dụ: tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng cho trước).

Lời giải chi tiết bài 4.21 trang 17

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài tập yêu cầu chúng ta tính đạo hàm của hàm số f(x) = x3 - 3x2 + 2x + 1.

Bước 1: Tính đạo hàm f'(x)

Áp dụng quy tắc tính đạo hàm của hàm số đa thức, ta có:

f'(x) = 3x2 - 6x + 2

Bước 2: Tìm điểm cực trị

Để tìm điểm cực trị, ta giải phương trình f'(x) = 0:

3x2 - 6x + 2 = 0

Sử dụng công thức nghiệm của phương trình bậc hai, ta tìm được hai nghiệm:

x1 = (6 + √12) / 6 = 1 + √3 / 3

x2 = (6 - √12) / 6 = 1 - √3 / 3

Bước 3: Xác định loại điểm cực trị

Để xác định loại điểm cực trị, ta xét dấu của đạo hàm bậc hai f''(x):

f''(x) = 6x - 6

Tại x1 = 1 + √3 / 3, f''(x1) = 6(1 + √3 / 3) - 6 = 2√3 > 0, do đó x1 là điểm cực tiểu.

Tại x2 = 1 - √3 / 3, f''(x2) = 6(1 - √3 / 3) - 6 = -2√3 < 0, do đó x2 là điểm cực đại.

Lưu ý khi giải bài tập về đạo hàm

Khi giải bài tập về đạo hàm, các em học sinh cần lưu ý những điều sau:

  • Nắm vững các định nghĩa và quy tắc tính đạo hàm.
  • Thực hành giải nhiều bài tập khác nhau để làm quen với các dạng bài tập.
  • Kiểm tra lại kết quả sau khi giải bài tập.
  • Sử dụng máy tính bỏ túi để hỗ trợ tính toán.

Giaitoan.edu.vn – Đồng hành cùng bạn học Toán

Giaitoan.edu.vn là website học Toán online uy tín, cung cấp lời giải chi tiết, dễ hiểu cho các bài tập Toán từ lớp 6 đến lớp 12. Chúng tôi hy vọng rằng với những hướng dẫn chi tiết trên, các em học sinh sẽ tự tin hơn khi giải bài tập 4.21 trang 17 Sách bài tập Toán 12 - Kết nối tri thức và đạt kết quả tốt trong môn Toán.

Bảng tổng hợp các công thức đạo hàm thường gặp

Hàm số yĐạo hàm y'
y = c (hằng số)y' = 0
y = xny' = nxn-1
y = sin xy' = cos x
y = cos xy' = -sin x

Tài liệu, đề thi và đáp án Toán 12