Bài 1.40 trang 27 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.40 trang 27 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Một khối bưu kiện có hình hộp chữ nhật được quy định về kích cỡ như sau: tổng chiều dài và chu vi thiết diện ngang (hình vuông) là (240) cm. Gọi (x) là độ dài cạnh của thiết diện ngang. a) Tính thể tích của khối bưu kiện theo (x). b) Kí hiệu (Vleft( x right)) là thể tích của khối bưu kiện. Khảo sát sự biến thiên của hàm số (y = Vleft( x right)).
Đề bài
Một khối bưu kiện có hình hộp chữ nhật được quy định về kích cỡ như sau: tổng chiều dài và chu vi thiết diện ngang (hình vuông) là \(240\) cm. Gọi \(x\) là độ dài cạnh của thiết diện ngang.
a) Tính thể tích của khối bưu kiện theo \(x\).
b) Kí hiệu \(V\left( x \right)\) là thể tích của khối bưu kiện. Khảo sát sự biến thiên của hàm số \(y = V\left( x \right)\).
Phương pháp giải - Xem chi tiết
Ý a:
+ Gọi chiều dài là y, biểu diễn \(y\) theo \(x\).
+ Xác định công thức thể tích \(V\left( x \right) = x \cdot y \cdot x\).
Ý b: Khảo sát hàm số \(V\left( x \right)\).
Lời giải chi tiết
a) Giả sử chiều dài là \(y\), ta có \(y + 4x = 240\) suy ra \(y = - 4x + 240\).
Khi đó thể tích khối bưu kiện là \(x \cdot y \cdot x = x \cdot \left( { - 4x + 240} \right) \cdot x = {x^2} \cdot \left( { - 4x + 240} \right)\) (cm3)
b) Xét hàm số \(V\left( x \right) = {x^2} \cdot \left( { - 4x + 240} \right)\).
Tập xác định: \(\left( {0;60} \right)\).
Sự biến thiên: \(V'\left( x \right) = 480x - 12{x^2}\) khi đó \(V'\left( x \right) = 0 \Leftrightarrow 480x - 12{x^2} = 0 \Leftrightarrow x = 40\) do \(x > 0\).
+ Hàm số đồng biến trên khoảng \(\left( {0;40} \right)\), nghịch biến trên \(\left( {40;60} \right)\).
+ Hàm số đạt cực đại tại \(x = 40\) với \({{V}_{C}}=128000\)cm3.
+ Giới hạn tại vô cực \(\mathop {\lim }\limits_{x \to + \infty } N\left( t \right) = 1200\)
+ Bảng biến thiên:
Bài 1.40 trang 27 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Dưới đây là đề bài và lời giải chi tiết bài 1.40 trang 27 Sách bài tập Toán 12 - Kết nối tri thức:
Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
f'(x) = 3x2 - 6x
3x2 - 6x = 0 ⇔ 3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Hàm số f(x) đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
Hàm số f(x) đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.
Lưu ý:
Để củng cố kiến thức về đạo hàm và các ứng dụng của đạo hàm, các em có thể tham khảo các bài tập tương tự sau:
Giaitoan.edu.vn hy vọng rằng lời giải chi tiết bài 1.40 trang 27 Sách bài tập Toán 12 - Kết nối tri thức sẽ giúp các em học sinh hiểu rõ hơn về đạo hàm và tự tin giải các bài tập tương tự. Chúc các em học tốt!