Bài 2.14 trang 46 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.14 trang 46, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho hình lập phương (ABCD.A'B'C'D') có độ dài các cạnh bằng a. Tính các tích vô hướng sau theo a: a) (overrightarrow {AC} cdot overrightarrow {B'D'} ); b) (overrightarrow {BD} cdot overrightarrow {B'C'} ); c) (overrightarrow {A'B'} cdot overrightarrow {AC'} ).
Đề bài
Cho hình lập phương \(ABCD.A'B'C'D'\) có độ dài các cạnh bằng a. Tính các tích vô hướng sau theo a:
a) \(\overrightarrow {AC} \cdot \overrightarrow {B'D'} \)
b) \(\overrightarrow {BD} \cdot \overrightarrow {B'C'} \)
c) \(\overrightarrow {A'B'} \cdot \overrightarrow {AC'} \)
Phương pháp giải - Xem chi tiết
Ý a: Đưa hai vectơ về một gốc, ta thấy hai vectơ vuông góc.
Ý b: : Đưa hai vectơ về một gốc, từ đó xác định góc giữa chúng từ áp dụng công thức tích vô hướng để giải.
Ý c: Đưa hai vectơ về một gốc, áp dụng kiến thức về định lý ba đường vuông góc trong quá trình tìm cạnh và góc, cuối cùng tính toán, áp dụng công thức để tìm tích vô hướng.
Lời giải chi tiết
a) Ta có \(\overrightarrow {B'D'} = \overrightarrow {BD} \). Mặt khác \(BD \bot AC\)(do ABCD là hình vuông) hay \(\overrightarrow {BD} \bot \overrightarrow {AC} \),
suy ra \(\overrightarrow {AC} \cdot \overrightarrow {B'D'} = \overrightarrow {AC} \cdot \overrightarrow {BD} = 0\).
b) Ta có \(\overrightarrow {B'C'} = \overrightarrow {BC} \). Suy ra :
\(\overrightarrow {BD} \cdot \overrightarrow {B'C'} = \overrightarrow {BD} \cdot \overrightarrow {BC} = BD \cdot BC \cdot \cos \left( {\overrightarrow {BD} ,\overrightarrow {BC} } \right) = a\sqrt 2 \cdot a \cdot \cos \widehat {DBC} = {a^2}\sqrt 2 \cdot \cos {45^ \circ } = {a^2}\sqrt 2 \cdot \frac{{\sqrt 2 }}{2} = {a^2}\).
c) Ta có \(\overrightarrow {A'B'} = \overrightarrow {AB} \). Suy ra \(\overrightarrow {A'B'} \cdot \overrightarrow {AC'} = \overrightarrow {AB} \cdot \overrightarrow {AC'} = AB \cdot AC' \cdot \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC'} } \right){\rm{ }}\left( 1 \right)\).
Ta sẽ tính cạnh \(AC'\) và xác định góc \(\left( {\overrightarrow {AB} ,\overrightarrow {AC'} } \right)\).
Ta có \(CB \bot AB\) suy ra \(C'B \bot AB\), do đó tam giác \(ABC'\) vuông tại \(B\).
Xét tam giác \(ABC'\) có \(AC' = \sqrt {A{B^2} + B{{C'}^2}} = \sqrt {{a^2} + 2{a^2}} = a\sqrt 3 \).
Lại có \(\left( {\overrightarrow {AB} ,\overrightarrow {AC'} } \right) = \widehat {BAC'}\) suy ra \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC'} } \right) = \cos \widehat {BAC'} = \frac{{AB}}{{AC'}} = \frac{a}{{a\sqrt 3 }} = \frac{1}{{\sqrt 3 }}\).
Thay \(AC' = a\sqrt 3 \) và \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC'} } \right) = \frac{1}{{\sqrt 3 }}\) vào \(\left( 1 \right)\) ta được:
\(\overrightarrow {A'B'} \cdot \overrightarrow {AC'} = AB \cdot AC' \cdot \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC'} } \right) = a \cdot a\sqrt 3 \cdot \frac{1}{{\sqrt 3 }} = {a^2}\).
Bài 2.14 trang 46 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Nội dung bài tập:
Bài 2.14 yêu cầu học sinh tìm đạo hàm của hàm số và giải các bài toán liên quan đến ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Để giải bài 2.14, chúng ta sẽ thực hiện các bước sau:
Ví dụ minh họa:
Giả sử hàm số cần tìm đạo hàm là f(x) = x3 - 3x2 + 2x. Ta thực hiện các bước sau:
Đạo hàm đóng vai trò quan trọng trong việc giải bài 2.14 và các bài tập liên quan đến hàm số. Cụ thể, đạo hàm được sử dụng để:
Để giải bài 2.14 một cách chính xác và hiệu quả, học sinh cần lưu ý những điều sau:
Để củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải bài tập, học sinh có thể tham khảo các bài tập tương tự sau:
Bài 2.14 trang 46 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và hướng dẫn giải trên, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.