Bài 2.11 trang 45 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán lớp 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài tập này, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Cho hình lăng trụ đứng (ABCD.A'B'C'D'). Biết rằng (AA' = 2) và tứ giác (ABCD) là hình thoi có (AB = 1) và (widehat {ABC} = {60^ circ }), hãy tính góc giữa các cặp vectơ sau và từ đó tính tích vô hướng của mỗi cặp vectơ đó: a) (overrightarrow {AB} ) và (overrightarrow {A'D'} ); b) (overrightarrow {AA'} ) và (overrightarrow {BD} ); c) (overrightarrow {AB} ) và (overrightarrow {A'C'} );
Đề bài
Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\). Biết rằng \(AA' = 2\) và tứ giác \(ABCD\) là hình thoi có \(AB = 1\) và \(\widehat {ABC} = {60^ \circ }\), hãy tính góc giữa các cặp vectơ sau và từ đó tính tích vô hướng của mỗi cặp vectơ đó:
a) \(\overrightarrow {AB} \) và \(\overrightarrow {A'D'} \)
b) \(\overrightarrow {AA'} \) và \(\overrightarrow {BD} \)
c) \(\overrightarrow {AB} \) và \(\overrightarrow {A'C'} \)
Phương pháp giải - Xem chi tiết
Ý a: Đưa hai vectơ về cùng gốc, nghĩa là từ một trong hai vectơ xác định một vectơ bằng vectơ đó sao cho nó có cùng điểm đầu với vectơ còn lại (sử dụng các yếu tố, song song, bằng nhau xuất hiện trong hình lăng trụ kết hợp với khái niệm hai vectơ bằng nhau). Sau khi xác định được vectơ đó ta sẽ tìm được góc giữa hai vectơ cần tìm là một góc nào đó trong hình, dùng kiến thức hình học phẳng về hình thoi đã học để tìm góc. Từ góc tìm được ta tiếp tục tính tích vô hướng giữa haii vectơ bằng công thức đã học.
Ý b: Chứng minh hai vectơ vuông góc, từ đó xác định được góc và tích vô hướng.
Ý c: Tương tự ý a, ngoài ra còn sử dụng kiến thức hình học phẳng trong tam giác ở bước tìm số đo góc.
Lời giải chi tiết
a) Ta có \(\overrightarrow {A'D'} = \overrightarrow {AD} \) suy ra \(\left( {\overrightarrow {AB} ,\overrightarrow {A'D'} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {BAC}\).
Mặt khác, xét hình thoi \(ABCD\) có \(\widehat {BAC} = \frac{{{{360}^ \circ } - 2 \cdot \widehat {ABC}}}{2} = \frac{{{{360}^ \circ } - 2 \cdot 60}}{2} = {120^ \circ }\).
Do đó \(\left( {\overrightarrow {AB} ,\overrightarrow {A'D'} } \right) = {120^ \circ }\). Khi đó ta có \(\overrightarrow {AB} \cdot \overrightarrow {A'D'} = AB \cdot AD \cdot \cos {120^ \circ } = 1 \cdot 1 \cdot \left( { - \frac{1}{2}} \right) = - \frac{1}{2}\).
b) Vì \(AA' \bot \left( {ABCD} \right)\) nên \(AA' \bot BD\), do đó \(\overrightarrow {AA'} \bot \overrightarrow {BD} \) hay \(\left( {\overrightarrow {AA'} ,\overrightarrow {BD} } \right) = {90^ \circ }\).
Khi đó ta có \(\overrightarrow {AA'} \cdot \overrightarrow {BD} = 0\).
c) Ta có \(\overrightarrow {A'C'} = \overrightarrow {AC} \) suy ra \(\left( {\overrightarrow {AB} ,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC}\).
Mặt khác, xét hình tam giác \(ABC\) có \(AB = BC = 1\) nên tam giác \(ABC\) cân tại B,
mà \(\widehat {ABC} = {60^ \circ }\) suy ra tam giác \(ABC\) là tam giác đều, vì vậy \(\widehat {BAC} = {60^ \circ }\).
Do đó \(\left( {\overrightarrow {AB} ,\overrightarrow {A'C'} } \right) = {60^ \circ }\). Khi đó ta có \(\overrightarrow {AB} \cdot \overrightarrow {A'C'} = AB \cdot A'C' \cdot \cos {60^ \circ } = 1 \cdot 1 \cdot \left( {\frac{1}{2}} \right) = \frac{1}{2}\).
Bài 2.11 trang 45 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học Toán lớp 12, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi của hàm số. Bài tập này thường xuất hiện trong các kỳ thi và kiểm tra, do đó việc nắm vững phương pháp giải là vô cùng quan trọng.
(Nội dung đề bài sẽ được chèn vào đây. Ví dụ: Một vật chuyển động theo quy luật s = t2 - 2t + 3, trong đó t là thời gian tính bằng giây và s là quãng đường tính bằng mét. Hãy tìm vận tốc của vật tại thời điểm t = 2 giây.)
Để giải bài tập này, chúng ta cần thực hiện các bước sau:
(Lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước tính toán cụ thể và giải thích rõ ràng.)
Ví dụ, với đề bài trên, ta có:
Vậy vận tốc của vật tại thời điểm t = 2 giây là 2 m/s.
Ngoài bài 2.11, còn rất nhiều bài tập tương tự yêu cầu vận dụng đạo hàm để giải quyết các vấn đề thực tế. Một số dạng bài tập phổ biến bao gồm:
Để giải bài tập về đạo hàm hiệu quả, bạn nên:
Để hiểu sâu hơn về đạo hàm và các ứng dụng của nó, bạn có thể tham khảo các tài liệu sau:
Hy vọng với hướng dẫn chi tiết này, các bạn học sinh sẽ tự tin giải bài 2.11 trang 45 Sách bài tập Toán 12 - Kết nối tri thức và các bài tập tương tự. Chúc các bạn học tốt!