Logo Header
  1. Môn Toán
  2. Giải bài 2.11 trang 45 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.11 trang 45 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.11 trang 45 Sách bài tập Toán 12 - Kết nối tri thức

Bài 2.11 trang 45 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán lớp 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài tập này, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Cho hình lăng trụ đứng (ABCD.A'B'C'D'). Biết rằng (AA' = 2) và tứ giác (ABCD) là hình thoi có (AB = 1) và (widehat {ABC} = {60^ circ }), hãy tính góc giữa các cặp vectơ sau và từ đó tính tích vô hướng của mỗi cặp vectơ đó: a) (overrightarrow {AB} ) và (overrightarrow {A'D'} ); b) (overrightarrow {AA'} ) và (overrightarrow {BD} ); c) (overrightarrow {AB} ) và (overrightarrow {A'C'} );

Đề bài

Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\). Biết rằng \(AA' = 2\) và tứ giác \(ABCD\) là hình thoi có \(AB = 1\) và \(\widehat {ABC} = {60^ \circ }\), hãy tính góc giữa các cặp vectơ sau và từ đó tính tích vô hướng của mỗi cặp vectơ đó:

a) \(\overrightarrow {AB} \) và \(\overrightarrow {A'D'} \)

b) \(\overrightarrow {AA'} \) và \(\overrightarrow {BD} \)

c) \(\overrightarrow {AB} \) và \(\overrightarrow {A'C'} \)

Phương pháp giải - Xem chi tiếtGiải bài 2.11 trang 45 sách bài tập toán 12 - Kết nối tri thức 1

Ý a: Đưa hai vectơ về cùng gốc, nghĩa là từ một trong hai vectơ xác định một vectơ bằng vectơ đó sao cho nó có cùng điểm đầu với vectơ còn lại (sử dụng các yếu tố, song song, bằng nhau xuất hiện trong hình lăng trụ kết hợp với khái niệm hai vectơ bằng nhau). Sau khi xác định được vectơ đó ta sẽ tìm được góc giữa hai vectơ cần tìm là một góc nào đó trong hình, dùng kiến thức hình học phẳng về hình thoi đã học để tìm góc. Từ góc tìm được ta tiếp tục tính tích vô hướng giữa haii vectơ bằng công thức đã học.

Ý b: Chứng minh hai vectơ vuông góc, từ đó xác định được góc và tích vô hướng.

Ý c: Tương tự ý a, ngoài ra còn sử dụng kiến thức hình học phẳng trong tam giác ở bước tìm số đo góc.

Lời giải chi tiết

a) Ta có \(\overrightarrow {A'D'} = \overrightarrow {AD} \) suy ra \(\left( {\overrightarrow {AB} ,\overrightarrow {A'D'} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {BAC}\).

Mặt khác, xét hình thoi \(ABCD\) có \(\widehat {BAC} = \frac{{{{360}^ \circ } - 2 \cdot \widehat {ABC}}}{2} = \frac{{{{360}^ \circ } - 2 \cdot 60}}{2} = {120^ \circ }\).

Do đó \(\left( {\overrightarrow {AB} ,\overrightarrow {A'D'} } \right) = {120^ \circ }\). Khi đó ta có \(\overrightarrow {AB} \cdot \overrightarrow {A'D'} = AB \cdot AD \cdot \cos {120^ \circ } = 1 \cdot 1 \cdot \left( { - \frac{1}{2}} \right) = - \frac{1}{2}\).

b) Vì \(AA' \bot \left( {ABCD} \right)\) nên \(AA' \bot BD\), do đó \(\overrightarrow {AA'} \bot \overrightarrow {BD} \) hay \(\left( {\overrightarrow {AA'} ,\overrightarrow {BD} } \right) = {90^ \circ }\).

Khi đó ta có \(\overrightarrow {AA'} \cdot \overrightarrow {BD} = 0\).

c) Ta có \(\overrightarrow {A'C'} = \overrightarrow {AC} \) suy ra \(\left( {\overrightarrow {AB} ,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC}\).

Mặt khác, xét hình tam giác \(ABC\) có \(AB = BC = 1\) nên tam giác \(ABC\) cân tại B,

mà \(\widehat {ABC} = {60^ \circ }\) suy ra tam giác \(ABC\) là tam giác đều, vì vậy \(\widehat {BAC} = {60^ \circ }\).

Do đó \(\left( {\overrightarrow {AB} ,\overrightarrow {A'C'} } \right) = {60^ \circ }\). Khi đó ta có \(\overrightarrow {AB} \cdot \overrightarrow {A'C'} = AB \cdot A'C' \cdot \cos {60^ \circ } = 1 \cdot 1 \cdot \left( {\frac{1}{2}} \right) = \frac{1}{2}\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 2.11 trang 45 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng học toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 2.11 trang 45 Sách bài tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 2.11 trang 45 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học Toán lớp 12, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi của hàm số. Bài tập này thường xuất hiện trong các kỳ thi và kiểm tra, do đó việc nắm vững phương pháp giải là vô cùng quan trọng.

Đề bài bài 2.11 trang 45 Sách bài tập Toán 12 - Kết nối tri thức

(Nội dung đề bài sẽ được chèn vào đây. Ví dụ: Một vật chuyển động theo quy luật s = t2 - 2t + 3, trong đó t là thời gian tính bằng giây và s là quãng đường tính bằng mét. Hãy tìm vận tốc của vật tại thời điểm t = 2 giây.)

Phương pháp giải bài 2.11 trang 45 Sách bài tập Toán 12 - Kết nối tri thức

Để giải bài tập này, chúng ta cần thực hiện các bước sau:

  1. Xác định hàm số: Xác định hàm số mô tả mối quan hệ giữa các đại lượng liên quan đến bài toán.
  2. Tính đạo hàm: Tính đạo hàm của hàm số, đạo hàm này biểu diễn tốc độ thay đổi của hàm số.
  3. Thay giá trị: Thay giá trị của biến độc lập (thường là thời gian t) vào đạo hàm để tìm giá trị cần tính (ví dụ: vận tốc).
  4. Kết luận: Đưa ra kết luận dựa trên kết quả tính toán.

Lời giải chi tiết bài 2.11 trang 45 Sách bài tập Toán 12 - Kết nối tri thức

(Lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước tính toán cụ thể và giải thích rõ ràng.)

Ví dụ, với đề bài trên, ta có:

  • Hàm số quãng đường: s(t) = t2 - 2t + 3
  • Đạo hàm của hàm số quãng đường (vận tốc): v(t) = s'(t) = 2t - 2
  • Vận tốc tại thời điểm t = 2 giây: v(2) = 2(2) - 2 = 2 m/s

Vậy vận tốc của vật tại thời điểm t = 2 giây là 2 m/s.

Các dạng bài tập tương tự bài 2.11 trang 45 Sách bài tập Toán 12 - Kết nối tri thức

Ngoài bài 2.11, còn rất nhiều bài tập tương tự yêu cầu vận dụng đạo hàm để giải quyết các vấn đề thực tế. Một số dạng bài tập phổ biến bao gồm:

  • Tìm vận tốc và gia tốc của vật chuyển động.
  • Tìm đạo hàm của hàm số kinh tế để xác định chi phí biên hoặc doanh thu biên.
  • Tìm điểm cực trị của hàm số.

Mẹo giải bài tập về đạo hàm Toán 12

Để giải bài tập về đạo hàm hiệu quả, bạn nên:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tài liệu tham khảo thêm về đạo hàm Toán 12

Để hiểu sâu hơn về đạo hàm và các ứng dụng của nó, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 - Kết nối tri thức
  • Sách bài tập Toán 12 - Kết nối tri thức
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng về đạo hàm trên YouTube

Hy vọng với hướng dẫn chi tiết này, các bạn học sinh sẽ tự tin giải bài 2.11 trang 45 Sách bài tập Toán 12 - Kết nối tri thức và các bài tập tương tự. Chúc các bạn học tốt!

Tài liệu, đề thi và đáp án Toán 12