Logo Header
  1. Môn Toán
  2. Giải bài 1.68 trang 37 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.68 trang 37 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.68 trang 37 Sách bài tập Toán 12 - Kết nối tri thức

Bài 1.68 trang 37 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài tập này, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Một hành lang giữa hai nhà có hình dạng của một lăng trụ đứng (xem hình bên). Hai mặt bên ABB’A’ và ACC’A’ là hai tấm kính hình chữ nhật dài 20 m, rộng 5 m. Gọi x (m) là độ dài của cạnh BC. a) Tính thể tích V của hình lăng trụ theo x. b) Tìm x sao cho hình lăng trụ có thể tích lớn nhất và tính giá trị lớn nhất đó.

Đề bài

Một hành lang giữa hai nhà có hình dạng của một lăng trụ đứng (xem hình bên). Hai mặt bên ABB’A’ACC’A’ là hai tấm kính hình chữ nhật dài 20 m, rộng 5 m. Gọi x (m) là độ dài của cạnh BC.

a) Tính thể tích V của hình lăng trụ theo x.

b) Tìm x sao cho hình lăng trụ có thể tích lớn nhất và tính giá trị lớn nhất đó.

Giải bài 1.68 trang 37 sách bài tập toán 12 - Kết nối tri thức 1

Phương pháp giải - Xem chi tiếtGiải bài 1.68 trang 37 sách bài tập toán 12 - Kết nối tri thức 2

Ý a: Sử dụng một số kiến thức về hình học phẳng và hình lăng trụ để tìm được diện tích đáy và chiều cao, từ đó tính được thể tích V.

Ý b: Xét hàm số V theo x trên \(\left( {0;10} \right)\)sau đó lập bảng biến thiên và tìm giá trị lớn nhất của hàm số.

Lời giải chi tiết

a) Ta thấy do ABB’A’ACC’A’ là hai tấm kính hình chữ nhật có kích thước giống nhau nên \(AC = AB\) (đều là chiều rộng của mặt hình chữ nhật) do đó đáy \(ABC\)là tam giác cân tại

\(A\). Gọi \(H\) là trung điểm cạnh \(AB\) suy ra \(AH\) là đường cao của tam giác (tính chất tam giác cân). Ta có \(AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {25 - {{\left( {\frac{x}{2}} \right)}^2}} = \frac{1}{2}\sqrt {100 - {x^2}} \).

Diện tích tam giác ABC là \(S = \frac{1}{2}BC \cdot AH = \frac{1}{2}x \cdot \frac{1}{2}\sqrt {100 - {x^2}} = \frac{1}{4}x\sqrt {100 - {x^2}} \).

Thể tích khối lăng trụ là \(V = S \cdot AA' = 5x\sqrt {100 - {x^2}} \) (m3) với \(0 < x < 10\).

b) Xét hàm số \(V = 5x\sqrt {100 - {x^2}} \) trên \(\left( {0;10} \right)\).

Ta có \(V' = 5x\sqrt {100 - {x^2}} + 5x\frac{{ - 2x}}{{2\sqrt {100 - {x^2}} }} = \frac{{500 - 10{x^2}}}{{\sqrt {100 - {x^2}} }};\)

Suy ra \(V' = 0 \Leftrightarrow 500 - 10{x^2} = 0 \Leftrightarrow x = 5\sqrt 2 \) do \(x > 0\).

Lập bảng biến thiên:

Giải bài 1.68 trang 37 sách bài tập toán 12 - Kết nối tri thức 3

Vậy hình lăng trụ có thể tích lớn nhất khi \(x = 5\sqrt 2 \) (m). \(\mathop {\max }\limits_{\left( {0;10} \right)} V = V\left( {5\sqrt 2 } \right) = 250\) (m3).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1.68 trang 37 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán math. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1.68 trang 37 Sách bài tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết và lời giải

Bài 1.68 trang 37 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:

  • Định nghĩa đạo hàm
  • Các quy tắc tính đạo hàm (quy tắc tổng, hiệu, tích, thương, hàm hợp)
  • Đạo hàm của các hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit)

Nội dung bài tập:

Bài 1.68 yêu cầu học sinh tìm đạo hàm của hàm số cho trước. Thông thường, hàm số sẽ có dạng phức tạp, đòi hỏi học sinh phải áp dụng linh hoạt các quy tắc tính đạo hàm đã học.

Lời giải chi tiết:

Để giải bài 1.68, chúng ta sẽ thực hiện các bước sau:

  1. Xác định hàm số: Xác định rõ hàm số cần tìm đạo hàm.
  2. Phân tích cấu trúc hàm số: Phân tích hàm số thành các thành phần đơn giản hơn để áp dụng các quy tắc tính đạo hàm.
  3. Áp dụng quy tắc tính đạo hàm: Sử dụng các quy tắc tính đạo hàm phù hợp để tìm đạo hàm của từng thành phần.
  4. Rút gọn biểu thức: Rút gọn biểu thức đạo hàm để có được kết quả cuối cùng.

Ví dụ minh họa:

Giả sử hàm số cần tìm đạo hàm là: f(x) = (x2 + 1) * sin(x)

Áp dụng quy tắc tích, ta có:

f'(x) = (x2 + 1)' * sin(x) + (x2 + 1) * sin'(x)

f'(x) = 2x * sin(x) + (x2 + 1) * cos(x)

Vậy, đạo hàm của hàm số f(x) là: f'(x) = 2x * sin(x) + (x2 + 1) * cos(x)

Lưu ý khi giải bài tập:

  • Đọc kỹ đề bài để hiểu rõ yêu cầu.
  • Sử dụng đúng các quy tắc tính đạo hàm.
  • Rút gọn biểu thức đạo hàm một cách cẩn thận.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Mở rộng kiến thức:

Ngoài bài 1.68, các em học sinh có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 12 - Kết nối tri thức để rèn luyện kỹ năng giải bài tập về đạo hàm. Bên cạnh đó, các em cũng có thể tìm hiểu thêm về các ứng dụng của đạo hàm trong thực tế, chẳng hạn như việc tìm cực trị của hàm số, vẽ đồ thị hàm số, và giải các bài toán tối ưu hóa.

Tầm quan trọng của việc nắm vững kiến thức về đạo hàm:

Kiến thức về đạo hàm là nền tảng quan trọng cho việc học tập các môn học khác, đặc biệt là Vật lý và Kinh tế. Đạo hàm được sử dụng rộng rãi trong các lĩnh vực khoa học kỹ thuật để mô tả sự thay đổi của các đại lượng và giải quyết các bài toán thực tế. Do đó, việc nắm vững kiến thức về đạo hàm là rất cần thiết cho sự phát triển của học sinh trong tương lai.

Tổng kết:

Bài 1.68 trang 37 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm. Bằng cách nắm vững các kiến thức cơ bản và áp dụng linh hoạt các quy tắc tính đạo hàm, các em học sinh có thể tự tin giải quyết bài tập này và các bài tập tương tự. Giaitoan.edu.vn hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, các em sẽ học tập tốt hơn môn Toán.

Tài liệu, đề thi và đáp án Toán 12