Logo Header
  1. Môn Toán
  2. Giải bài 4.35 trang 19 sách bài tập toán 12 - Kết nối tri thức

Giải bài 4.35 trang 19 sách bài tập toán 12 - Kết nối tri thức

Giải bài 4.35 trang 19 sách bài tập Toán 12 - Kết nối tri thức

Bài 4.35 trang 19 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.35 trang 19, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Cho hàm số (fleft( x right)) có đạo hàm (f'left( x right)) liên tục trên (mathbb{R}), (fleft( 0 right) = 1) và (intlimits_0^2 {f'left( x right)dx} = 4). Khi đó giá trị của (fleft( 2 right)) bằng A. 5. B. -3. C. 6. D. 8.

Đề bài

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) liên tục trên \(\mathbb{R}\), \(f\left( 0 \right) = 1\) và \(\int\limits_0^2 {f'\left( x \right)dx} = 4\). Khi đó giá trị của \(f\left( 2 \right)\) bằng

A. 5.

B. -3.

C. 6.

D. 8.

Phương pháp giải - Xem chi tiếtGiải bài 4.35 trang 19 sách bài tập toán 12 - Kết nối tri thức 1

Từ \(\int\limits_0^2 {f'\left( x \right)dx} = f\left( 2 \right) - f\left( 0 \right)\) ta tìm được \(f\left( 2 \right)\)

Lời giải chi tiết

Ta có \(\int\limits_0^2 {f'\left( x \right)dx} = f\left( 2 \right) - f\left( 0 \right) \Leftrightarrow f\left( 2 \right) = \int\limits_0^2 {f'\left( x \right)dx} + f\left( 0 \right) \Leftrightarrow f\left( 2 \right) = 4 + 1 = 5\).

Vậy ta chọn đáp án A.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 4.35 trang 19 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 4.35 trang 19 sách bài tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 4.35 trang 19 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học Toán 12, tập trung vào ứng dụng của đạo hàm trong việc khảo sát hàm số và giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm cách tính đạo hàm, các quy tắc đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 4.35 trang 19

Bài tập 4.35 thường yêu cầu học sinh thực hiện các thao tác sau:

  • Tính đạo hàm của hàm số.
  • Tìm các điểm cực trị của hàm số.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số.
  • Giải các bài toán liên quan đến ứng dụng của đạo hàm, ví dụ như tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng cho trước.

Lời giải chi tiết bài 4.35 trang 19

Để giải bài 4.35 trang 19, ta thực hiện theo các bước sau:

  1. Bước 1: Xác định hàm số cần khảo sát.
  2. Bước 2: Tính đạo hàm cấp nhất của hàm số.
  3. Bước 3: Tìm các điểm cực trị của hàm số bằng cách giải phương trình đạo hàm bằng 0.
  4. Bước 4: Lập bảng biến thiên của hàm số để xác định khoảng đồng biến, nghịch biến và các điểm cực trị.
  5. Bước 5: Vẽ đồ thị hàm số.
  6. Bước 6: Sử dụng đồ thị hàm số để giải các bài toán liên quan đến ứng dụng của đạo hàm.

Ví dụ minh họa

Giả sử hàm số cần khảo sát là y = x3 - 3x2 + 2. Ta thực hiện các bước sau:

  1. Bước 1: Hàm số y = x3 - 3x2 + 2.
  2. Bước 2: Đạo hàm cấp nhất: y' = 3x2 - 6x.
  3. Bước 3: Giải phương trình y' = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2.
  4. Bước 4: Lập bảng biến thiên:
    x-∞02+∞
    y'+-+
    y
  5. Bước 5: Vẽ đồ thị hàm số.
  6. Bước 6: Sử dụng đồ thị hàm số để giải các bài toán liên quan đến ứng dụng của đạo hàm.

Lưu ý khi giải bài tập 4.35

  • Nắm vững các kiến thức cơ bản về đạo hàm.
  • Thực hiện các bước giải một cách cẩn thận và chính xác.
  • Sử dụng đồ thị hàm số để kiểm tra lại kết quả.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải bài tập.

Tài liệu tham khảo

Học sinh có thể tham khảo thêm các tài liệu sau để hiểu rõ hơn về bài tập 4.35:

  • Sách giáo khoa Toán 12 - Kết nối tri thức.
  • Sách bài tập Toán 12 - Kết nối tri thức.
  • Các trang web học Toán online uy tín.

Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin giải bài 4.35 trang 19 sách bài tập Toán 12 - Kết nối tri thức một cách hiệu quả. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 12