Bài 1.55 trang 34 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.55 trang 34 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Cho hàm số (y = frac{{{x^2} + mx + 1}}{{x + m}}). Hàm số đạt cực đại tại (x = 2) khi A. (m = - 1). B. (m = - 3). C. (m in left{ { - 3; - 1} right}). D. (m in emptyset ).
Đề bài
Cho hàm số \(y = \frac{{{x^2} + mx + 1}}{{x + m}}\). Hàm số đạt cực đại tại \(x = 2\) khi
A. \(m = - 1\)
B. \(m = - 3\)
C. \(m \in \left\{ { - 3; - 1} \right\}\)
D. \(m \in \emptyset \)
Phương pháp giải - Xem chi tiết
+ Tính đạo hàm cấp 1 và cấp 2 của hàm số.
+ Yêu cầu bài toán tương đương với đạo hàm cấp 1 tại \(x = 2\) bằng 0, đạo hàm cấp 2 tại \(x = 2\) âm. Ta sẽ tìm m thỏa mãn điều kiện này.
Lời giải chi tiết
Ta có \(y' = \frac{{\left( {2x + m} \right)\left( {x + m} \right) - \left( {{x^2} + mx + 1} \right) \cdot 1}}{{{{\left( {x + m} \right)}^2}}} = \frac{{{x^2} + 2mx + {m^2} - 1}}{{{{\left( {x + m} \right)}^2}}}\).
Suy ra:
\(\begin{array}{l}y'' = {\left[ {\frac{{{x^2} + 2mx + {m^2} - 1}}{{{{\left( {x + m} \right)}^2}}}} \right]^\prime } = \frac{{\left( {2x + 2m} \right){{\left( {x + m} \right)}^2} - 2\left( {x + m} \right)\left( {{x^2} + 2mx + {m^2} - 1} \right)}}{{{{\left( {x + m} \right)}^2}}}\\{\rm{ }} = 2x + 2m - \frac{{2\left( {{x^2} + 2mx + {m^2} - 1} \right)}}{{x + m}}\end{array}\).
Để hàm số đạt cực đại tại \(x = 2\) thì \(y'\left( 2 \right) = 0\) và \(y''\left( 2 \right) < 0\).
Ta có \(y'\left( 2 \right) = 0 \Leftrightarrow \frac{{{2^2} + 2m \cdot 2 + {m^2} - 1}}{{{{\left( {2 + m} \right)}^2}}} = 0 \Leftrightarrow 3 + 4m + {m^2} = 0 \Leftrightarrow m = - 1\) hoặc \(m = - 3\).
Với \(m = - 1\) ta có \(y''\left( 2 \right) = 2 \cdot 2 + 2 \cdot \left( { - 1} \right) - \frac{{2\left( {{2^2} + 2\left( { - 1} \right) \cdot 2 + {{\left( { - 1} \right)}^2} - 1} \right)}}{{2 - 1}} = 2 > 0\), do đó \(x = 2\) là một điểm cực tiểu của hàm số.
Với \(m = - 3\) ta có \(y''\left( 2 \right) = 2 \cdot 2 + 2 \cdot \left( { - 3} \right) - \frac{{2\left( {{2^2} + 2\left( { - 3} \right) \cdot 2 + {{\left( { - 3} \right)}^2} - 1} \right)}}{{2 - 3}} = - 2 < 0\), do đó \(x = 2\) là một điểm cực đại của hàm số.
Vậy để \(x = 2\) là một điểm cực đại của hàm số thì \(m = - 3\). Ta chọn đáp án B.
Bài 1.55 trang 34 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Nội dung bài tập:
Bài 1.55 yêu cầu học sinh tìm đạo hàm của hàm số cho trước. Thông thường, hàm số sẽ có dạng phức tạp, đòi hỏi học sinh phải áp dụng linh hoạt các quy tắc tính đạo hàm đã học.
Để giải bài 1.55 trang 34 Sách bài tập Toán 12 - Kết nối tri thức, chúng ta thực hiện theo các bước sau:
Giả sử hàm số cần tìm đạo hàm là: f(x) = x2 + 2x + 1
Áp dụng quy tắc đạo hàm của hàm đa thức, ta có:
f'(x) = 2x + 2
Vậy, đạo hàm của hàm số f(x) = x2 + 2x + 1 là f'(x) = 2x + 2.
Ngoài bài 1.55, Sách bài tập Toán 12 - Kết nối tri thức còn có nhiều bài tập tương tự về đạo hàm. Để nắm vững kiến thức và kỹ năng giải bài tập về đạo hàm, học sinh nên luyện tập thường xuyên với các bài tập khác nhau.
Một số dạng bài tập tương tự bao gồm:
Khi giải bài tập về đạo hàm, học sinh cần lưu ý một số điều sau:
Bài 1.55 trang 34 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững các kiến thức cơ bản và luyện tập thường xuyên, học sinh có thể tự tin giải quyết các bài tập về đạo hàm một cách hiệu quả.
Giaitoan.edu.vn hy vọng rằng lời giải chi tiết và hướng dẫn giải bài 1.55 trang 34 Sách bài tập Toán 12 - Kết nối tri thức sẽ giúp các em học sinh học tập tốt hơn.