Logo Header
  1. Môn Toán
  2. Giải bài 4.27 trang 18 sách bài tập toán 12 - Kết nối tri thức

Giải bài 4.27 trang 18 sách bài tập toán 12 - Kết nối tri thức

Giải bài 4.27 trang 18 Sách bài tập Toán 12 - Kết nối tri thức

Bài 4.27 trang 18 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.27 trang 18 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Hàm cầu và hàm cung của một sản phẩm được mô hình hóa bởi: Hàm cầu: (p = - 0,2x + 8) và hàm cung: (p = 0,1x + 2), trong đó (x) là số đơn vị sản phẩm, (p) là giá của mỗi đơn vị sản phẩm (tính bằng triệu đồng). Tìm thặng dư tiêu dùng và thặng dư sản xuất đối với sản phẩm này.

Đề bài

Hàm cầu và hàm cung của một sản phẩm được mô hình hóa bởi:

Hàm cầu: \(p = - 0,2x + 8\) và hàm cung: \(p = 0,1x + 2\), trong đó \(x\) là số đơn vị sản phẩm, \(p\) là giá của mỗi đơn vị sản phẩm (tính bằng triệu đồng). Tìm thặng dư tiêu dùng và thặng dư sản xuất đối với sản phẩm này.

Phương pháp giải - Xem chi tiếtGiải bài 4.27 trang 18 sách bài tập toán 12 - Kết nối tri thức 1

Xét phương trình hoành độ giao điểm của hàm cung và hàm cầu, giải phương trình ta được \(x = {x_0}\), thay vào hàm ta có \(p = {p_0}\).

Giả sử hàm cung là \(p = {p_1}\), hàm cầu là \(p = {p_2}\).

Thặng dư tiêu dùng được tính bằng công thức \(\int\limits_0^{{x_0}} {\left( {{p_2} - {p_0}} \right)dx} \).

Thặng dư sản xuất được tính bằng công thức \(\int\limits_0^{{x_0}} {\left( {{p_0} - {p_1}} \right)dx} \).

Lời giải chi tiết

Xét phương trình \( - 0,2x + 8 = 0,1x + 2 \Leftrightarrow x = 20\). Khi đó \(p = 0,1 \cdot 20 + 2 = 4\).

Thặng dư tiêu dùng là \(\int\limits_0^{20} {\left( { - 0,2x + 8 - 4} \right)dx} = \left. {\left( { - 0,1{x^2} + 4x} \right)} \right|_0^{20} = - 0,1 \cdot {20^2} + 4 \cdot 20 = 40\) (triệu đồng).

Thặng dư sản xuất là \(\int\limits_0^{20} {\left( {4 - 0,1x - 2} \right)dx} = \left. {\left( {2x - 0,05{x^2}} \right)} \right|_0^{20} = 20\) (triệu đồng).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 4.27 trang 18 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục toán 12 trên nền tảng toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 4.27 trang 18 Sách bài tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 4.27 trang 18 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:

  • Định nghĩa đạo hàm
  • Các quy tắc tính đạo hàm (quy tắc cộng, trừ, nhân, chia, đạo hàm hợp)
  • Đạo hàm của các hàm số cơ bản (hàm số đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit)

Dưới đây là đề bài và lời giải chi tiết bài 4.27 trang 18 Sách bài tập Toán 12 - Kết nối tri thức:

Đề bài:

Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm f'(x):
  2. f'(x) = 3x2 - 6x

  3. Tìm các điểm làm f'(x) = 0:
  4. 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

  5. Lập bảng xét dấu f'(x):
  6. x-∞02+∞
    f'(x)+-+
    f(x)Đồng biếnNghịch biếnĐồng biến
  7. Kết luận:
  8. Hàm số f(x) đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.

    Hàm số f(x) đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Lưu ý:

  • Để tìm các điểm cực trị của hàm số, ta cần tìm các điểm làm đạo hàm bậc nhất bằng 0 và xét dấu đạo hàm bậc nhất để xác định tính đơn điệu của hàm số.
  • Nếu đạo hàm bậc nhất đổi dấu từ dương sang âm tại một điểm, thì điểm đó là điểm cực đại.
  • Nếu đạo hàm bậc nhất đổi dấu từ âm sang dương tại một điểm, thì điểm đó là điểm cực tiểu.

Các bài tập tương tự

Để củng cố kiến thức về đạo hàm và các ứng dụng của đạo hàm, các em có thể tham khảo thêm các bài tập tương tự sau:

  • Bài 4.28 trang 18 Sách bài tập Toán 12 - Kết nối tri thức
  • Bài 4.29 trang 18 Sách bài tập Toán 12 - Kết nối tri thức
  • Các bài tập về đạo hàm trong sách giáo khoa Toán 12

Hy vọng với lời giải chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài 4.27 trang 18 Sách bài tập Toán 12 - Kết nối tri thức và tự tin hơn trong quá trình học tập.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 12