Bài 1.21 trang 19 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.21 trang 19 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Cho hàm số (y = fleft( x right) = frac{{{x^2} + 3x - 10}}{{x - 2}}). Đồ thị hàm số (fleft( x right)) có tiệm cận đứng không?
Đề bài
Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} + 3x - 10}}{{x - 2}}\). Đồ thị hàm số \(f\left( x \right)\) có tiệm cận đứng không?
Phương pháp giải - Xem chi tiết
Tính giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\). Nhận xét thấy hàm số liên tục tại các điểm khác 2 và \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) \ne \infty \) nên theo định nghĩa tiệm cận đứng suy ra đồ thị hàm số không tồn tại tiệm cận đứng.
Lời giải chi tiết
Ta có \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + 3x - 10}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 5} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 5} \right) = 2 + 5 = 7\).
Lại có \(f\left( x \right)\) liên tục với mọi \(x \ne 2\). Do đó không tồn tại \({x_0}\) để hàm số có giới hạn tại đó là \(\infty \).
Vậy đồ thị hàm số \(f\left( x \right)\) không có tiệm cận đứng.
Bài 1.21 trang 19 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về:
Bài 1.21 thường yêu cầu học sinh thực hiện các thao tác sau:
Để giải bài 1.21 trang 19, ta thực hiện theo các bước sau:
Giả sử hàm số f(x) = x3 - 3x2 + 2. Ta sẽ giải bài 1.21 với hàm số này:
Khi giải bài tập về đạo hàm, học sinh cần chú ý:
Học sinh có thể tham khảo thêm các tài liệu sau để hiểu rõ hơn về đạo hàm:
Bài 1.21 trang 19 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn giải trên, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.