Bài 1.13 trang 14 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn của hàm số để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.13 trang 14 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau: a) (y = - {x^3} + 3{x^2} + 2); b) (y = frac{{{x^2}}}{{{x^2} + 2}}).
Đề bài
Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:
a) \(y = - {x^3} + 3{x^2} + 2\);
b) \(y = \frac{{{x^2}}}{{{x^2} + 2}}\).
Phương pháp giải - Xem chi tiết
- Tìm tập xác định của hàm số.
- Tính đạo hàm, tìm các điểm mà tại đó đạo hàm bằng \(0\) hoặc đạo hàm không tồn tại.
- Lập bảng biến thiên của hàm số.
- Từ bảng biến thiên suy ra giá trị lớn nhất, nhỏ nhất (nếu có).
Lời giải chi tiết
a) Tập xác định: \(\mathbb{R}\)
Ta có \(y' = - 3{x^2} + 6x\). Khi đó \(y' = 0 \Leftrightarrow - 3{x^2} + 6x = 0 \Leftrightarrow x = 0\) hoặc \(x = 2\).
Lập bảng biến thiên của hàm số:
Từ bảng biến thiên thấy hàm số không có cả giá trị lớn nhất và giá trị nhỏ nhất.
b) Tập xác định: \(\mathbb{R}\)
Ta có \(y' = \frac{{1 \cdot \left( {{x^2} + 2} \right) - x \cdot 2x}}{{{{\left( {{x^2} + 2} \right)}^2}}} = \frac{{ - {x^2} + 2}}{{{{\left( {{x^2} + 2} \right)}^2}}}\).
Khi đó \(y' = 0 \Leftrightarrow \frac{{ - {x^2} + 2}}{{{{\left( {{x^2} + 2} \right)}^2}}} = 0 \Leftrightarrow - {x^2} + 2 = 0 \Leftrightarrow x = - \sqrt 2 \) hoặc \(x = \sqrt 2 \).
Lập bảng biến thiên của hàm số:
Từ bảng biến thiên, ta có: \(\mathop {\min }\limits_\mathbb{R} y = y\left( { - \sqrt 2 } \right) = \frac{{ - \sqrt 2 }}{4}\); \(\mathop {\max }\limits_\mathbb{R} y = y\left( {\sqrt 2 } \right) = \frac{{\sqrt 2 }}{4}\).
Bài 1.13 trang 14 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về giới hạn của hàm số. Để giải bài tập này, học sinh cần nắm vững các khái niệm cơ bản về giới hạn, các tính chất của giới hạn và các phương pháp tính giới hạn.
Bài tập 1.13 yêu cầu tính giới hạn của các hàm số khi x tiến tới một giá trị cụ thể. Các hàm số có thể là hàm đa thức, hàm phân thức, hàm lượng giác hoặc các hàm số khác.
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích và giải chi tiết từng câu hỏi trong bài 1.13 trang 14 Sách bài tập Toán 12 - Kết nối tri thức.
Câu a: Tính limx→2 (x2 - 4) / (x - 2)
Lời giải:
Ta có: (x2 - 4) / (x - 2) = (x - 2)(x + 2) / (x - 2) = x + 2 (với x ≠ 2)
Do đó: limx→2 (x2 - 4) / (x - 2) = limx→2 (x + 2) = 2 + 2 = 4
Câu b: Tính limx→0 sin(x) / x
Lời giải:
Đây là một giới hạn quen thuộc trong toán học. Ta có: limx→0 sin(x) / x = 1
Câu c: Tính limx→∞ (2x + 1) / (x - 3)
Lời giải:
Ta có: (2x + 1) / (x - 3) = (2 + 1/x) / (1 - 3/x)
Do đó: limx→∞ (2x + 1) / (x - 3) = (2 + 0) / (1 - 0) = 2
Kiến thức về giới hạn có ứng dụng rộng rãi trong nhiều lĩnh vực của toán học, đặc biệt là trong giải tích. Nó được sử dụng để định nghĩa đạo hàm, tích phân và các khái niệm quan trọng khác. Việc nắm vững kiến thức về giới hạn là nền tảng để học tốt các môn học cao cấp hơn trong toán học.
Hy vọng với lời giải chi tiết và dễ hiểu này, các em học sinh sẽ tự tin hơn khi giải bài tập 1.13 trang 14 Sách bài tập Toán 12 - Kết nối tri thức và các bài tập tương tự. Chúc các em học tập tốt!