Logo Header
  1. Môn Toán
  2. Giải bài 6.20 trang 46 sách bài tập toán 12 - Kết nối tri thức

Giải bài 6.20 trang 46 sách bài tập toán 12 - Kết nối tri thức

Giải bài 6.20 trang 46 Sách bài tập Toán 12 - Kết nối tri thức

Bài 6.20 trang 46 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.20 trang 46, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Thống kê kết quả của một đội bóng X trong 37 trận tại giải vô địch quốc gia ta có kết quả sau: Chọn ngẫu nhiên một trận. Tính xác suất để: a) Đó là trận đá thắng nếu biết rằng trận đó đá trên sân nhà. b) Đó là trận đá trên sân nhà nếu biết rằng trận đó thắng.

Đề bài

Thống kê kết quả của một đội bóng X trong 37 trận tại giải vô địch quốc gia ta có kết quả sau:

Giải bài 6.20 trang 46 sách bài tập toán 12 - Kết nối tri thức 1

Chọn ngẫu nhiên một trận. Tính xác suất để:

a) Đó là trận đá thắng nếu biết rằng trận đó đá trên sân nhà.

b) Đó là trận đá trên sân nhà nếu biết rằng trận đó thắng.

Phương pháp giải - Xem chi tiếtGiải bài 6.20 trang 46 sách bài tập toán 12 - Kết nối tri thức 2

Ý a: Gọi tên các biến cố. Áp dụng công thức xác suất có điều kiện.

Ý b: Áp dụng công thức xác suất có điều kiện.

Lời giải chi tiết

a) Gọi A là biến cố: “Đó là trận thắng”;

B là biến cố: “Đó là trận đá trên sân nhà”;

AB là biến cố: “Đó là trận thắng và đá trên sân nhà”.

Ta có \(n\left( A \right) = 11 + 6 = 17,{\rm{ }}n\left( B \right) = 11 + 5 + 3 = 19,{\rm{ }}n\left( {AB} \right) = 11\).

Do đó \(P\left( A \right) = \frac{{17}}{{37}};{\rm{ P}}\left( B \right) = \frac{{19}}{{37}};{\rm{ }}P\left( {AB} \right) = \frac{{11}}{{37}}\).

Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{11}}{{19}}\).

b) \(P\left( {B|A} \right) = \frac{{P\left( {BA} \right)}}{{P\left( A \right)}} = \frac{{11}}{{17}}\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 6.20 trang 46 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 6.20 trang 46 Sách bài tập Toán 12 - Kết nối tri thức: Phương pháp và đáp án chi tiết

Bài 6.20 trang 46 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:

  • Định nghĩa đạo hàm
  • Các quy tắc tính đạo hàm (quy tắc tổng, hiệu, tích, thương, hàm hợp)
  • Đạo hàm của các hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit)

Nội dung bài tập:

Bài 6.20 yêu cầu học sinh tìm đạo hàm của hàm số và sử dụng đạo hàm để giải quyết các bài toán liên quan đến tính đơn điệu, cực trị của hàm số.

Lời giải chi tiết bài 6.20 trang 46

Để giải bài 6.20, ta thực hiện các bước sau:

  1. Bước 1: Tính đạo hàm của hàm số. Sử dụng các quy tắc tính đạo hàm đã học để tìm đạo hàm f'(x) của hàm số f(x).
  2. Bước 2: Tìm tập xác định của hàm số. Xác định khoảng mà hàm số f(x) xác định.
  3. Bước 3: Tìm các điểm tới hạn. Giải phương trình f'(x) = 0 để tìm các điểm tới hạn của hàm số.
  4. Bước 4: Xét dấu đạo hàm. Lập bảng xét dấu đạo hàm f'(x) trên các khoảng xác định của hàm số.
  5. Bước 5: Kết luận về tính đơn điệu và cực trị. Dựa vào bảng xét dấu đạo hàm, kết luận về khoảng đồng biến, nghịch biến và các điểm cực trị của hàm số.

Ví dụ minh họa:

Giả sử hàm số f(x) = x3 - 3x2 + 2. Ta thực hiện các bước sau:

  1. Tính đạo hàm: f'(x) = 3x2 - 6x
  2. Tập xác định: D = R
  3. Điểm tới hạn: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  4. Bảng xét dấu đạo hàm:

    x-∞02+∞
    f'(x)+-+
    f(x)Đồng biếnNghịch biếnĐồng biến
  5. Kết luận: Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.

Lưu ý khi giải bài tập về đạo hàm

  • Nắm vững các quy tắc tính đạo hàm.
  • Chú ý đến tập xác định của hàm số.
  • Sử dụng bảng xét dấu đạo hàm để xác định tính đơn điệu và cực trị của hàm số.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Hy vọng với lời giải chi tiết và phương pháp giải bài tập trên, các em học sinh sẽ tự tin hơn khi làm bài tập về đạo hàm trong sách bài tập Toán 12 - Kết nối tri thức. Chúc các em học tập tốt!

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Tài liệu, đề thi và đáp án Toán 12