Bài 1.67 trang 36 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài tập này, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Cắt bỏ hình quạt tròn OAB (hình phẳng có nét gạch trong hình dưới đây) từ một mảnh các tông hình tròn bán kính R rồi dán hai bán kính OA và OB của hình quạt tròn còn lại với nhau được một cái phễu có dạng của một hình nón. Gọi x là góc ở tâm của quạt tròn dùng làm phễu (left( {0 < x < 2pi } right)). a) Hãy biểu diễn bán kính đáy r và đường cao h của hình nón theo R và x. b) Tính thể tích của hình nón theo R và x c) Tìm x để hình nón có thể tích lớn nhất và tính giá trị lớn nhất đó.
Đề bài
Cắt bỏ hình quạt tròn OAB (hình phẳng có nét gạch trong hình dưới đây) từ một mảnh các tông hình tròn bán kính R rồi dán hai bán kính OA và OB của hình quạt tròn còn lại với nhau được một cái phễu có dạng của một hình nón. Gọi x là góc ở tâm của quạt tròn dùng làm phễu \(\left( {0 < x < 2\pi } \right)\).
a) Hãy biểu diễn bán kính đáy r và đường cao h của hình nón theo R và x.
b) Tính thể tích của hình nón theo R và x
c) Tìm x để hình nón có thể tích lớn nhất và tính giá trị lớn nhất đó.
Phương pháp giải - Xem chi tiết
Ý a: Chu vi đáy hình nón bằng độ dài cung AB, từ đó tìm được r, áp dụng định lý Pythagore để tìm h.
Ý b: Sau khi đã biết bán kính và chiều cao từ ý a, áp dụng công thức tính thể tích hình nón để tìm được V.
Ý c: Xét hàm số V theo x để tìm giá trị lớn nhất của hàm số trên \(\left( {0;2\pi } \right)\).
Lời giải chi tiết
a) Vì độ dài của đường tròn đáy hình nón (chu vi đáy) bằng độ dài của quạt tròn dùng làm phễu nên ta có \(2\pi r = Rx \Leftrightarrow r = \frac{{Rx}}{{2\pi }}\). Khi đó ta có:
\(h = \sqrt {{R^2} - {r^2}} = \sqrt {{R^2} - \frac{{{R^2}{x^2}}}{{4{\pi ^2}}}} = \frac{R}{{2\pi }}\sqrt {4{\pi ^2} - {x^2}} \).
b) Thể tích hình nón là \(V = \frac{1}{3}\pi {r^2}h = \frac{{{R^3}}}{{24{\pi ^2}}}{x^2}\sqrt {4{\pi ^2} - {x^2}} \).
c) Ta cần tìm \(x \in \left( {0;2\pi } \right)\) để thể tích \(V\) đạt giá trị lớn nhất.
Xét hàm số \(V = \frac{{{R^3}}}{{24{\pi ^2}}}{x^2}\sqrt {4{\pi ^2} - {x^2}} ,x \in \left( {0;2\pi } \right)\).
Ta có \(V' = \frac{{{R^3}}}{{24{\pi ^2}}}\frac{{x\left( {8{\pi ^2} - 3{x^2}} \right)}}{{\sqrt {4{\pi ^2} - {x^2}} }}\) suy ra \(V' = 0 \Leftrightarrow x\left( {8{\pi ^2} - 3{x^2}} \right) = 0 \Leftrightarrow x = \frac{{2\sqrt 6 }}{3}\pi \), do \(x > 0\).
Lập bảng biến thiên:
Hình nón có diện tích lớn nhất khi \(x = \frac{{2\sqrt 6 }}{3}\pi \) khi đó \(\mathop {\max }\limits_{\left( {0;2\pi } \right)} V = V\left( {\frac{{2\sqrt 6 }}{3}\pi } \right) = \frac{{2\sqrt 3 }}{{27}}\pi {R^3}\).
Bài 1.67 trang 36 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Nội dung bài tập:
Bài 1.67 yêu cầu học sinh tìm đạo hàm của hàm số và giải các bài toán liên quan đến ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Để giải bài 1.67, chúng ta sẽ thực hiện các bước sau:
Ví dụ minh họa:
Giả sử hàm số được cho là f(x) = x3 - 3x2 + 2. Ta thực hiện các bước sau:
Đạo hàm là một công cụ mạnh mẽ trong việc giải các bài toán liên quan đến hàm số. Nó giúp chúng ta:
Lưu ý khi giải bài tập về đạo hàm:
Để học tốt về đạo hàm, các em có thể tham khảo các tài liệu sau:
Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin giải bài 1.67 trang 36 sách bài tập Toán 12 - Kết nối tri thức và đạt kết quả tốt trong môn Toán.