Bài 4.2 trang 7 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.2 trang 7 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Tìm: a) (int {frac{{{{left( {x + 2} right)}^2}}}{{{x^4}}}} dx); b) (int {sqrt x } left( {7{x^2} + 6} right)dx).
Đề bài
Tìm:
a) \(\int {\frac{{{{\left( {x + 2} \right)}^2}}}{{{x^4}}}} dx\);
b) \(\int {\sqrt x } \left( {7{x^2} + 6} \right)dx\).
Phương pháp giải - Xem chi tiết
Ý a: Ta sử dụng các biến đổi cơ bản và sử dụng công thức nguyên hàm của hàm lũy thừa.
Ý b: Ta sử dụng các biến đổi cơ bản và sử dụng công thức nguyên hàm của hàm lũy thừa.
Lời giải chi tiết
a) Ta có \(\frac{{{{\left( {x + 2} \right)}^2}}}{{{x^4}}} = \frac{{{x^2} + 4x + 4}}{{{x^4}}} = \frac{1}{{{x^2}}} + \frac{4}{{{x^3}}} + \frac{4}{{{x^4}}}\).
Do đó \(\int {\frac{{{{\left( {x + 2} \right)}^2}}}{{{x^4}}}} dx = \int {\left( {\frac{1}{{{x^2}}} + \frac{4}{{{x^3}}} + \frac{4}{{{x^4}}}} \right)dx = } \int {\frac{1}{{{x^2}}}dx + } \int {\frac{4}{{{x^3}}}dx + } \int {\frac{4}{{{x^4}}}dx} \)
\( = \frac{{ - 1}}{{{\rm{ }}x}} + 4 \cdot \frac{{{x^{ - 2}}}}{{ - 2}} + 4 \cdot \frac{{{x^{ - 3}}}}{{ - 3}} + C\)\( = \frac{{ - 1}}{{{\rm{ }}x}} - \frac{2}{{{x^2}}} - \frac{4}{{3{x^3}}} + C.\)
b) Ta có \(\int {\sqrt x } \left( {7{x^2} + 6} \right)dx = \int {\left( {7{x^2}\sqrt x + 6\sqrt x } \right)} {\rm{ }}dx\)\( = 7\int {{x^2}\sqrt x dx + 6\int {\sqrt x dx = 7\int {{x^{\frac{5}{2}}}dx + 6} } } \int {{x^{\frac{1}{2}}}} dx\)
\( = 7 \cdot \frac{{{x^{\frac{7}{2}}}}}{{\left( {\frac{7}{2}} \right)}} + 6 \cdot \frac{{{x^{\frac{3}{2}}}}}{{\left( {\frac{3}{2}} \right)}} + C = 2{x^3}\sqrt x + 4x\sqrt x + C = 2x\sqrt x \left( {{x^2} + 2} \right) + C.\)
Bài 4.2 trang 7 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Dưới đây là đề bài và lời giải chi tiết bài 4.2 trang 7 Sách bài tập Toán 12 - Kết nối tri thức:
Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x).
Để tính f'(x), ta sử dụng quy tắc tính đạo hàm của hàm số đa thức:
(xn)' = nxn-1
Áp dụng quy tắc này, ta có:
f'(x) = (x3)' - 3(x2)' + (2)'
f'(x) = 3x2 - 3(2x) + 0
f'(x) = 3x2 - 6x
Vậy, f'(x) = 3x2 - 6x.
Bài tập này giúp học sinh rèn luyện kỹ năng tính đạo hàm của hàm số đa thức. Để làm tốt bài tập này, học sinh cần nắm vững các quy tắc tính đạo hàm và thực hành thường xuyên.
Ngoài ra, học sinh cũng cần lưu ý các trường hợp đặc biệt khi tính đạo hàm, ví dụ như đạo hàm của hàm hợp, đạo hàm của hàm ẩn.
Để hiểu rõ hơn về cách tính đạo hàm, ta xét một số ví dụ sau:
Lời giải:
Để củng cố kiến thức về đạo hàm, các em học sinh có thể tự giải các bài tập sau:
Bài 4.2 trang 7 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh nắm vững kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, các em học sinh sẽ hiểu rõ hơn về bài tập này và tự tin làm bài tập.
Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục môn Toán. Chúc các em học tập tốt!