Logo Header
  1. Môn Toán
  2. Giải bài 2.3 trang 44 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.3 trang 44 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.3 trang 44 Sách bài tập Toán 12 - Kết nối tri thức

Bài 2.3 trang 44 sách bài tập Toán 12 Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.3 trang 44 sách bài tập Toán 12 Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Cho hình hộp chữ nhật ABCD.A’B’C’D’ có (AB = AD = 1) và (AA' = 2). Tính độ dài của các vectơ sau: a) (overrightarrow {BD} )?; b) (overrightarrow {CD'} )? ; c) (overrightarrow {AC'} )?.

Đề bài

Cho hình hộp chữ nhật ABCD.A’B’C’D’ có \(AB = AD = 1\) và \(AA' = 2\). Tính độ dài của các vectơ sau:

a) \(\overrightarrow {BD} \)

b) \(\overrightarrow {CD'} \)

c) \(\overrightarrow {AC'} \)

Phương pháp giải - Xem chi tiếtGiải bài 2.3 trang 44 sách bài tập toán 12 - Kết nối tri thức 1

Sử dụng tính chất của hình hộp chữ nhật về đáy, mặt bên, tính chất vuông góc.

Ý a: Xác định tam giác vuông trong hình có chứa cạnh BD đã biết số đo hai cạnh còn lại sau đó áp dụng định lý Pythagore để tính độ dài BD.

Ý b: Xác định tam giác vuông trong hình có chứa cạnh CD đã biết số đo hai cạnh còn lại sau đó áp dụng định lý Pythagore để tính độ dài CD.

Ý c: Xác định tam giác vuông trong hình có chứa cạnh AC’ đã biết số đo hai cạnh còn lại sau đó áp dụng định lý Pythagore để tính độ dài AC’.

Lời giải chi tiết

Giải bài 2.3 trang 44 sách bài tập toán 12 - Kết nối tri thức 2

a) Xét tam giác vuông cân ABD ta có \(BD = \left| {\overrightarrow {BD} } \right| = \sqrt {A{B^2} + A{D^2}} = \sqrt {1 + 1} = \sqrt 2 \).

b) Xét tam giác vuông cân CDD’ ta có \(BD' = \overrightarrow {\left| {BD'} \right|} = \sqrt {D{C^2} + D{{D'}^2}} = \sqrt {1 + 4} = \sqrt 5 \).

c) Ta có tứ giác ABCD là hình vuông có cạnh bằng 1, suy ra \(AC = \left| {\overrightarrow {AC} } \right| = \sqrt {1 + 1} = \sqrt 2 \).

Xét tam giác vuông ACC’  có \(AC' = \left| {\overrightarrow {AC'} } \right| = \sqrt {A{C^2} + C{{C'}^2}} = \sqrt {2 + 4} = \sqrt 6 \).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 2.3 trang 44 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 2.3 trang 44 Sách bài tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 2.3 trang 44 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:

  • Định nghĩa đạo hàm
  • Các quy tắc tính đạo hàm (quy tắc cộng, trừ, nhân, chia, đạo hàm hợp)
  • Đạo hàm của các hàm số cơ bản (hàm số đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit)

Dưới đây là đề bài và lời giải chi tiết bài 2.3 trang 44 sách bài tập Toán 12 Kết nối tri thức:

Đề bài:

Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x) và tìm các điểm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm f'(x):
  2. Sử dụng quy tắc đạo hàm của hàm số đa thức, ta có:

    f'(x) = 3x2 - 6x

  3. Tìm các điểm cực trị:
  4. Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:

    3x2 - 6x = 0

    3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

  5. Xác định loại cực trị:
  6. Ta xét dấu của f'(x) trên các khoảng:

    • Khoảng (-∞; 0): Chọn x = -1, f'(-1) = 3(-1)2 - 6(-1) = 9 > 0, hàm số đồng biến.
    • Khoảng (0; 2): Chọn x = 1, f'(1) = 3(1)2 - 6(1) = -3 < 0, hàm số nghịch biến.
    • Khoảng (2; +∞): Chọn x = 3, f'(3) = 3(3)2 - 6(3) = 9 > 0, hàm số đồng biến.

    Vậy:

    • Tại x = 0, hàm số đạt cực đại và giá trị cực đại là f(0) = 03 - 3(0)2 + 2 = 2.
    • Tại x = 2, hàm số đạt cực tiểu và giá trị cực tiểu là f(2) = 23 - 3(2)2 + 2 = -2.

Kết luận: Hàm số f(x) = x3 - 3x2 + 2 đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là -2.

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài 2.3 trang 44, sách bài tập Toán 12 Kết nối tri thức còn nhiều bài tập tương tự về đạo hàm. Để giải các bài tập này, học sinh cần:

  • Nắm vững các quy tắc tính đạo hàm.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán để kiểm tra kết quả.

Một số dạng bài tập thường gặp:

  • Tính đạo hàm của hàm số hợp.
  • Tìm đạo hàm cấp hai.
  • Ứng dụng đạo hàm để giải các bài toán về cực trị, điểm uốn, khoảng đơn điệu.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 12, học sinh có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12.
  • Sách bài tập Toán 12.
  • Các trang web học Toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng trên YouTube.

Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về bài 2.3 trang 44 sách bài tập Toán 12 Kết nối tri thức và tự tin hơn trong quá trình học tập.

Tài liệu, đề thi và đáp án Toán 12