Logo Header
  1. Môn Toán
  2. Giải bài 5.42 trang 38 sách bài tập toán 12 - Kết nối tri thức

Giải bài 5.42 trang 38 sách bài tập toán 12 - Kết nối tri thức

Giải bài 5.42 trang 38 Sách bài tập Toán 12 - Kết nối tri thức

Bài 5.42 trang 38 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5.42 trang 38 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Trong không gian Oxyz, cho hai đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 3 + 2t\\y = - 2 + t\\z = 1 + 3t\end{array} \right.\) và \(\Delta ':\frac{{x + 2}}{3} = \frac{{y - 3}}{2} = \frac{{z - 1}}{{ - 2}}\). a) Chứng minh rằng hai đường thẳng \(\Delta \) và \(\Delta '\) chéo nhau. b) Viết phương trình mặt phẳng (P) chứa \(\Delta \) và song song với đường thẳng \(\Delta '\).

Đề bài

Trong không gian Oxyz, cho hai đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 3 + 2t\\y = - 2 + t\\z = 1 + 3t\end{array} \right.\) và \(\Delta ':\frac{{x + 2}}{3} = \frac{{y - 3}}{2} = \frac{{z - 1}}{{ - 2}}\).

a) Chứng minh rằng hai đường thẳng \(\Delta \) và \(\Delta '\) chéo nhau.

b) Viết phương trình mặt phẳng (P) chứa \(\Delta \) và song song với đường thẳng \(\Delta '\).

Phương pháp giải - Xem chi tiếtGiải bài 5.42 trang 38 sách bài tập toán 12 - Kết nối tri thức 1

Ý a: Tính tích vô hướng của tích có hướng của hai vectơ chỉ phương với \(\overrightarrow {AB} \), với A, B lần lượt thuộc \(\Delta \) và \(\Delta '\).

Ý b: Mặt phẳng (P) đi qua A và có một vectơ pháp tuyến là tích có hướng của hai vectơ chỉ phương.

Lời giải chi tiết

a) Vectơ chỉ phương của \(\Delta \) là \(\overrightarrow u = \left( {2;1;3} \right)\), vectơ chỉ phương của \(\Delta '\) là \(\overrightarrow {u'} = \left( {3;2; - 2} \right)\).

Đường thẳng \(\Delta \) đi qua \(A\left( {3; - 2;1} \right)\), đường thẳng \(\Delta '\) đi qua \(B\left( { - 2;3;1} \right)\).

Ta có \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( { - 8;14;1} \right)\); \(\overrightarrow {AB} = \left( { - 5;5;0} \right)\). Suy ra \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \cdot \overrightarrow {AB} = 110 \ne 0\).

Do đó \(\Delta \) và \(\Delta '\) chéo nhau.

b) Do (P) chứa \(\Delta \) và song song với đường thẳng \(\Delta '\) nên (P) có một vectơ pháp tuyến là \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( { - 8;14;1} \right)\) và (P) chứa điểm \(A\left( {3; - 2;1} \right)\).

Phương trình mặt phẳng của (P) là \( - 8\left( {x - 3} \right) + 14\left( {y + 2} \right) + 1\left( {z - 1} \right) = 0 \Leftrightarrow - 8x + 14y + z + 51 = 0\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 5.42 trang 38 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán math. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 5.42 trang 38 Sách bài tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 5.42 trang 38 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:

  • Định nghĩa đạo hàm
  • Các quy tắc tính đạo hàm (quy tắc tổng, hiệu, tích, thương, hàm hợp)
  • Đạo hàm của các hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit)

Dưới đây là đề bài và lời giải chi tiết bài 5.42 trang 38 Sách bài tập Toán 12 - Kết nối tri thức:

Đề bài:

Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Lời giải:

Để tìm các điểm cực trị của hàm số f(x), ta thực hiện các bước sau:

  1. Tính đạo hàm f'(x)
  2. Giải phương trình f'(x) = 0 để tìm các điểm dừng
  3. Xét dấu của f'(x) trên các khoảng xác định để xác định các điểm cực trị

Bước 1: Tính đạo hàm f'(x)

f'(x) = 3x2 - 6x

Bước 2: Giải phương trình f'(x) = 0

3x2 - 6x = 0

3x(x - 2) = 0

Suy ra x = 0 hoặc x = 2

Vậy, hàm số có hai điểm dừng là x = 0 và x = 2.

Bước 3: Xét dấu của f'(x) trên các khoảng xác định

Ta xét các khoảng sau:

  • Khoảng (-∞; 0): Chọn x = -1, f'(-1) = 3(-1)2 - 6(-1) = 3 + 6 = 9 > 0. Vậy f'(x) > 0 trên khoảng (-∞; 0).
  • Khoảng (0; 2): Chọn x = 1, f'(1) = 3(1)2 - 6(1) = 3 - 6 = -3 < 0. Vậy f'(x) < 0 trên khoảng (0; 2).
  • Khoảng (2; +∞): Chọn x = 3, f'(3) = 3(3)2 - 6(3) = 27 - 18 = 9 > 0. Vậy f'(x) > 0 trên khoảng (2; +∞).

Từ việc xét dấu của f'(x), ta có thể kết luận:

  • Tại x = 0, f'(x) đổi dấu từ dương sang âm, nên hàm số đạt cực đại tại x = 0. Giá trị cực đại là f(0) = 03 - 3(0)2 + 2 = 2.
  • Tại x = 2, f'(x) đổi dấu từ âm sang dương, nên hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là f(2) = 23 - 3(2)2 + 2 = 8 - 12 + 2 = -2.

Kết luận:

Hàm số f(x) = x3 - 3x2 + 2 đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là -2.

Mở rộng và ứng dụng

Bài toán tìm cực trị của hàm số có nhiều ứng dụng trong thực tế, ví dụ như:

  • Tìm giá trị lớn nhất và giá trị nhỏ nhất của một hàm số trên một khoảng cho trước.
  • Xác định các điểm tối ưu trong các bài toán tối ưu hóa.
  • Phân tích sự biến thiên của hàm số.

Để hiểu sâu hơn về đạo hàm và các ứng dụng của nó, các em học sinh nên tham khảo thêm các tài liệu học tập và luyện tập thường xuyên. Giaitoan.edu.vn sẽ tiếp tục cung cấp các bài giải chi tiết và dễ hiểu cho các bài tập Toán 12 khác. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 12